This study evaluated the individual and interactive effect of phenol and thiocyanate (SCN−) on partial nitritation (PN) activity using batch test and response surface methodology. The IC50 of phenol and SCN− on PN sludge were 5.6 and 351 mg L−1, respectively. The PN sludge was insensitive to phenol and SCN− at levels lower than 1.77 and 43.3 mg L−1, respectively. A regression model equation was developed and validated to predict the relative specific respiration rate (RSRR) of PN sludge exposed to different phenol and SCN− concentrations. In the range of independent variables, the most severe inhibition was observed with a valley value (17%) for RSRR, when the phenol and SCN− concentrations were 4.08 and 198 mg L−1, respectively. An isobole plot was used to judge the combined toxicity of phenol and SCN−, and the joint inhibitory effect was variable depending on the composition and concentration of the toxic components. Furthermore, the toxic compounds showed independent effects, which is the most common type of combined toxicity.
An investigation was conducted to estimate the effectiveness of air bags as a function of velocity. The study consisted of three parts: a theoretical idealization, an analysis of National Automotive Sampling System/Crashworthiness Data System (NASS/CDS), and a reanalysis of previously published Fatality Analysis Reporting System (FARS) data. The theoretical analysis looked at idealized risk curves as a function of velocity; assuming that the air bag offers a benefit for both belted and unbelted occupants. Analysis of the NASS/CDS data looked at the effectiveness of air bags as a function of velocity for Maximum Abbreviated Injury Scale (MAIS) 3+ injuries. The reanalysis of the previously published FARS data looked at the effectiveness of the air bag as a function of velocity for fatalities. The theoretical analysis indicates that the air bag effectiveness should be greatest at the low velocities. The field data analysis of both NASS/CDS and FARS were consistent with the theoretical analysis, indicating that air bags are most effective at the lower velocities, below 40 kph (25 mph), for both belted and unbelted occupants. Although it was not possible to estimate a different effect for belted and unbelted for fatalities using FARS, it was possible for MAIS 3+ using NASS/CDS. For unbelted occupants the effectiveness goes to zero or becomes negative above 40 kph (25 mph) for MAIS 3+, and for belted occupants the effectiveness stays positive but with significantly lower magnitude for speeds above 40 kph (25 mph). 相似文献