Predicting the soil-to-plant transfer of metals in the context of global warming has become a major issue for food safety. It requires a better understanding of how the temperature alters the bioavailability of metals in cultivated soils. This study focuses on one agricultural soil contaminated by Cd, Zn and Pb. DGT measurements were performed at 10, 20 and 30 °C to assess how the bioavailability of metals was affected by a rise in soil temperature. A lettuce crop was cultivated in the same conditions to determine if the soil-to-plant transfer of metals increased with a rise in soil temperature. A gradual decline in Cd and Zn bioavailability was observed from 10 to 30 °C, which was attributed to more intense complexation of metals in the pore water at higher temperatures. Together with its aromaticity, the affinity of dissolved organic matter (DOM) for metals was indeed suspected to increase with soil temperature. One main output of the present work is a model which satisfactorily explains the thermal-induced changes in the characteristics of DOM reported in Cornu et al. (Geoderma 162:65–70, 2011) by assuming that the mineralization of initial aliphatic compounds followed a first-order reaction, increased with soil temperature according to the Arrhenius law, and due to a priming effect, led to the appearance of aromatic molecules. The soil-to-plant transfer of Cd and Zn was promoted at higher soil temperatures despite a parallel decrease in Cd and Zn bioavailability. This suggests that plant processes affect the soil-to-plant transfer of Cd and Zn the most when the soil temperature rises. 相似文献
To protect the environmental quality of soil, groundwater, and surface water near the landfill site, it is necessary to make
an accurate assessment of the heavy metal mobility. This study aims to present the bio-immobilization behavior of heavy metals
in landfill and provide some reference suggestion for the manipulation of heavy metal pollution control after closure. 相似文献
Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth’s climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth’s climate. 相似文献
The photocatalytic reduction of CO2 with H2O was investigated using Cu/TiO2 photocatalysts in aqueous solution. For this purpose, Cu/TiO2 photocatalysts (with 0.2, 0.9, 2, 4, and 6 wt.% of Cu) have been synthesized via sol-gel method. The photocatalysts were extensively characterized by means of inductively coupled plasma optical emission spectrometry (ICP-OES), N2 physisorption (BET), XRD, UV-vis DRS, FT-IR, Raman spectroscopy, TEM-EDX, and photoelectrochemical measurements. The as-prepared photocatalysts contain anatase as a major crystalline phase with a crystallite size around 13 nm. By increasing the amount of Cu, specific surface area and band gap energy decreased in addition to the formation of large agglomeration of CuO. Results revealed that the photocatalytic reduction of CO2 decreased in the presence of Cu/TiO2 in comparison to pure TiO2, which might be associated to the formation of CuO phase acting as a recombination center of generated electron-hole pair. Decreasing of photoactivity can also be connected with a very low position of conduction band of photocatalysts with high Cu content, which makes H2 production necessary for CO2 reduction more difficult. 相似文献
Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic
Sweden. We recorded the change in coverage of shrub and tree species over a 32– to 34-year period, in three 50 × 50 m plots;
in the alpine-tree-line ecotone. The cover of shrubs and trees (<3.5 cm diameter at breast height) were estimated during 2009–2010
and compared with historical documentation from 1976 to 1977. Similarly, all tree stems (≥3.5 cm) were noted and positions
determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs
and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory. 相似文献
Triclocarban (TCC) is an antibacterial agent found in pharmaceuticals and personal care products (PPCP). It is potentially bioaccumulative and an endocrine disruptor, being classified as a contaminant of emerging concern (CEC). In normal uses, approximately 96% of the used TCC can be washed down the drain going into the sewer system and eventually enter in the aquatic environment. UV photolysis can be used to photodegrade TCC and ecotoxicity assays could indicate the photodegradation efficiency, since the enormous structural diversity of photoproducts and their low concentrations do not always allow to identify and quantify them. In this work, the TCC was efficiently degraded by UVC direct photolysis and the ecotoxicity of the UV-treated mixtures was investigated. Bioassays indicates that Daphnia similis (48 h EC50 = 0.044 μM) was more sensitive to TCC than Pseudokirchneriella subcapitata (72 h IC50 = 1.01 μM). TCC and its photoproducts caused significant effects on Eisenia andrei biochemical responses (catalase and glutathione-S-transferase); 48 h was a critical exposure time, since GST reached the highest activity values. UVC reduced the TCC toxic effect after 120 min. Furthermore, TCC was photodegraded in domestic wastewater which was simultaneously disinfected for total coliform bacterial (TCB) (360 min) and Escherichia coli (60 min).
The protocols commonly applied in surveys with lichens as biomonitors of airborne trace elements require analyses of samples derived from thalli or parts of thalli grown in the last year before sampling, under the postulation that samples of the same size are of the same age. Unfortunately, the influence of ecological site-specific factors on lichen growth is still largely ignored, so that samples of the same size collected in environmentally and climatically diverse sites might actually differ in age. This work aims at quantifying the influence of climatic conditions on the radial growth rates (RaGRs) of Xanthoria parietina, one of the most popular lichen biomonitors. RaGR was monitored in seven populations distributed along an altitudinal transect of 30 km in the Classical Karst (NE Italy), from 20 to 500 m above sea level. For c. 17 months, lobe growth was measured seasonally with a digital calliper, and site-specific climatic variables were monitored by means of thermo-hygrometric sensors and implemented by meteorological data. Finally, the lobe growth of X. parietina was modelled as a function of 18 environmental variables. Results revealed that thalli of relatively dry sites had significantly lower seasonal RaGR with respect to moister ones. Considering that cumulative precipitations were equally distributed along the transect, it was concluded that RaGR of X. parietina is affected negatively by high air temperatures and positively by high relative humidity. The importance of RaGR variation in lichen bioaccumulation studies is critically discussed. 相似文献
Samples of effluents, sludge, pulp, final products (paper) and soil were collected from the identified pulp and paper mills
in India. The samples were analysed for 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD) and other dioxin congeners and
precursors. Pulp and paper mills using chlorine for the bleaching process showed the presence of 2,3,7,8-TCDD in effluent
samples. In the effluent and pulp samples from mills where chlorine dioxide was used as a bleaching agent, the 2,3,7,8-TCDD
congener ranged from below the detection limit 0.05 to 0.12 ngL−1/ngg−1. The relative standard deviation of reproducibility and the percent recovery of 2,3,7,8-TCDD were 2.07 and 82.4% in pulp
and 2.8 and 92% in effluent, respectively. The 1,3,6,8-TCDD was the only other major dioxin congener found in the treated
and untreated effluent and sludge samples. However, dichlorobenzene, trichlorophenyl, and hexachlorobiphenyl were detected
in all samples. The formation of dioxins can be minimised by replacing chlorine with chlorine dioxide in bleaching processes
in pulp and paper mills. 相似文献
Efforts are on the way on the Swedish West Coast to develop the capacity for cultivation of marine resources, notably of kelps. Given that this is a region of great natural and national heritage, public opposition to marine developments has been identified as a possible risk factor. This survey thus sought to shed light on awareness levels, perceptions of different types of aquaculture and on reactions to a scenario depicting future aquaculture developments on the West Coast. When asked about their general opinions of aquaculture, respondents tended to be favourable though a majority chose neutral responses. On the whole, respondents were favourable to the depicted scenario. Finally, it was found that the high-awareness group tended to be more supportive than the low or medium-awareness groups, hinting at the benefits of increasing awareness to reduce public aversion and to support a sustainable development of aquaculture on the Swedish West Coast. 相似文献