首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   2篇
安全科学   1篇
废物处理   23篇
环保管理   11篇
综合类   15篇
基础理论   15篇
环境理论   1篇
污染及防治   32篇
评价与监测   14篇
社会与环境   5篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   10篇
  2013年   14篇
  2012年   3篇
  2011年   6篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   10篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1985年   1篇
  1974年   1篇
  1966年   2篇
  1965年   3篇
  1964年   1篇
排序方式: 共有117条查询结果,搜索用时 46 毫秒
61.
This paper aims at analyzing the feasibility of a waste heat recovery power generation plant based on parametric optimization and performance analysis using different organic Rankine cycle configurations and heat source temperature conditions with working fluid R-12, R-123, R-134a, and R-717. A parametric optimization of turbine inlet temperature(TIT) was performed to obtain the irreversibility rate, system efficiency, availability ratio, turbine work output, system mass flow rate, second-law efficiency, and turbine outlet quality, along the saturated vapor line and also on superheating at an inlet pressure of 2.50 MP in basic as well as regenerative organic Rankine cycle. The calculated results reveal that selection of a basic organic Rankine cycle using R-123 as working fluid gives the maximum system efficiency, turbine work output, second-law efficiency, availability ratio with minimum system irreversibility rate and system mass flow rate up to a TIT of 150°C and appears to be a choice system for generation of power by utilizing the flue gas waste heat of thermal power plants and above 150°C the regenerative superheat organic Rankine cycle configuration using R 123 as working fluid gives the same results.  相似文献   
62.
Water availability in arid regions is both sporadic and highly variable in quantity. If the water quality shows large variations of salinity and concentration of other chemical constituents with depth and time span, it has considerable effect on the entire hydrological set up of the area. In the Saidabad tahsil area, the deep aquifers that supply water to borewells in the alluvial plain of the Mathura region, Uttar Pradesh, have higher salinity than those of the dugwells from the shallow aquifers. The excessive drilling of tubewells and high yield tubewells are resulting in deterioration of water quality of the shallow aquifers. On the contrary, the chemical constituents such as, Na+, K +, Cl -, andHCO 3 - show higher concentration in shallow aquifers than deep aquifers. A study carried out to monitor water quality in this region reveals that the groundwater quality varies with depth and time span in shallow and deep aquifers. Factors controlling variations in salinity and concentration of chemical constituents of the water in the two types of aquifers are discussed. The relative merits of the shallow water for potability are pointed out with respect to salinity concentrations and public health.  相似文献   
63.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were characterized with dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The presence of clay and crosslinking with epichlorohydrin was found to have considerable effect on the dynamic mechanical properties and thermal stability of the films. Intercomponent H-bonding between starch, Poly(vinylalcohol) and glycerol enhanced the thermal stability of the films. But incorporation of clay and crosslinking with epichlorohydrin enhanced the steric crowding and lowered the thermal stability of the films.  相似文献   
64.
Many reports have recognized the need for a national water census for the United States and have called upon the U.S. Geological Survey to undertake this challenge. For example, the National Science and Technology Council stated: “The United States has a strong need for an ongoing census of water that describes the status of our Nation's water resource at any point in time and identifies trends over time.” Responding to the need for this information, the U.S. Congress established the SECURE Water Act. The directives are to provide a more accurate assessment of the status of the water resources of the United States; determine the quantity of water available for beneficial uses; identify long‐term trends in water availability; assist in determination of the quality of the water resources; and develop the basis for an improved ability to forecast the availability of water for future economic, energy production, and environmental uses. This article provides summary and new information on the process and progress on work to estimate water budget components nationwide, involvement of stakeholder interests, efforts to examine water‐use characteristics throughout the Nation, studies of water availability in geographically focused areas and the initiation of methods to provide open access to existing and new water resources information contributing to Open Water Data Initiative (OWDI) efforts and objectives.  相似文献   
65.
Two biodegradable polyesters, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) were melt-compounded in a twin screw extruder to fabricate a novel PBS/PBAT blend. The compatibility of the blend was attributed to the transesterification reaction that was confirmed by Fourier transform infrared spectroscopy. The Gibbs free energy equation was applied to explain the miscibility of the resulting blend. Dynamic mechanical analysis of the blends exhibits an intermediate tanδ peak compared to the individual components which suggests that the blend achieved compatibility. One of the key findings is that the tensile strength of the optimized blend is higher than each of the blended partner. Rheological properties revealed a strong shear-thinning tendency of the blend by the addition of PBAT into PBS. The phase morphology of the blends was observed through scanning electron microscopy, which revealed that phase separation occurred in the blends. The spherulite growth in the blends was highly influenced by the crystallization temperature and composition. In addition, the presence of a dispersed amorphous phase was found to be a hindrance to the spherulite growth, which was confirmed by polarizing optical microscopy. Furthermore, the increased crystallization ability of PBAT in the blend systems gives the blend a balanced thermal resistance property.  相似文献   
66.
This research paper provides a brief discussion about the relevance of third generation biodiesel co-products diversification. This diversification can be performed through the utilization of residual microalgal biomass (RMB) after oil extraction process. The present work analyses the use of RMB as potential filler for biocomposite production by means of understanding the chemical composition, the thermal stability as well as the protein content of RMB. Thermogravimetric analysis revealed the processing window of the RMB for biocomposite production and its dependence on its purity, especially on residual fat content. Biocomposites of RMB and poly(butylene succinate) (PBS) were prepared by melting processing technique using extrusion followed by injection-molding. Tensile, flexural and impact properties of the processed samples were evaluated. Scanning electron microscopy of fractured sections of the biocomposites was also used to examine the dispersion of RMB in PBS matrix. Finally, this study shows a competitive alternative to produce PBS-RMB biocomposites by replacing PBS by RMB in the range between 20 and 30 %. However, further studies are necessary to improve the compatibility of RMB with PBS to obtain competitive mechanical properties, compared to neat materials through, for instance, block co-polymers.  相似文献   
67.
Rising global population would force farmers to amplify food production substantially in upcoming 3–4 decades. The easiest way to increase grain production is through expanding cropping area by clearing uncultivated land. This is attained by permitting deadly loss of carbon (C) stocks, jeopardizing ecosystem biodiversity and deteriorating environmental quality. We aim to propose key agronomical tactics, livestock management strategy and advance approaches for aquaculture to increase productivity and simultaneously reduce the environmental impacts of farming sector. For this, we considered three major sectors of farming, i.e. agriculture, fishery and dairy. We collected literatures stating approaches or technologies that could reduce GHG emission from these sectors. Thereafter, we synthesized strategies or options that are more feasible and accessible for inclusion in farm sector to reduce GHG emission. Having comprehensively reviewed several publications, we propose potential strategies to reduce GHG emission. Agronomic practices like crop diversification, reducing summer fallow, soil organic carbon sequestration, tillage and crop residue management and inclusion of N2-fixing pulses in crop rotations are some of those. Livestock management through changing animals’ diets, optimal use of the gas produced from manures, frequent and complete manure removal from animal housing and aquaculture management strategies to improve fish health and improve feed conversion efficiency could reduce their GHG emission footprint too. Adapting of effective and economic practices GHG emission footprint reduction potential of farming sector could make farming sector a C neutral enterprise. To overcome the ecological, technological and institutional barriers, policy on trade, tax, grazing practice and GHG pricing should be implemented properly.  相似文献   
68.
Melt extrusion was used to obtain thermoplastic corn gluten meal (tCGM) blends from plasticized corn gluten meal (pCGM) and poly(butylene adipate-co-terephthalate) (PBAT). Dynamic rheological tests, morphology and spectroscopy were employed to understand the effect of the plasticization and destructurization of corn gluten meal (CGM) on tCGM blends. Rheological data showed a plateau in the low frequencies for tCGM blends demonstrating network formation which responds elastically over long timescales. Also, complex viscosity data showed the existing of shear thinning for PBAT and PBAT–CGM blend. Furthermore, rheology and morphology showed the synergistic influence of plasticization and destructuralization of CGM on the phase structure development of the blends. In addition, it was found for unmodified CGM–PBAT blend there was significant frequency dependence for G′ indicating it just acted as filler for PBAT matrix. FTIR studies showed that the urea has helped in unfolding the corn protein and facilitated hydrogen bonding interactions with PBAT. Tensile properties showed an improvement in tCGM blends when compared unmodified CGM blend. Tensile strength of tCGM blends was almost same as that of the neat PBAT matrix. Percent elongation, a strong reflection of the state of interface in the blends has showed higher values, indicating strong interactions between the PBAT and pCGM in the blend system.  相似文献   
69.
Poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) blends with different levels of chain extender were prepared and cast into films. The effect of chain extender on the mechanical, thermal and barrier properties of the films were investigated. With the inclusion of the chain extender, the compatibility and interfacial adhesion between the two polymer phases were significantly improved by a mean of forming a PLA–chain extender–PPC copolymer. Reactions between the chain extender, PLA and PPC were observed through FTIR study. SEM study also confirmed the improved compatibility and interfacial adhesion. The elongation at break of the compatibilized film with optimal amount of chain extender showed dramatic increase by up to 1940 %. DSC studies revealed that chain extender hindered the crystallization of the film which explained the decrease in both water and oxygen barrier when adding chain extender. PLA was found to be able to enhance both oxygen and water barrier of the blend as compared to neat PPC, while in the case of the blend with chain extender, oxygen and water barrier properties exhibited reduction at the beginning. However, when increasing chain extender concentration, these two barrier performance exhibited an upward trend. It was found that PLA/PPC blend showed much better oxygen barrier property than both parent polymers, which can be ascribed to the acceleration effect of PPC on the crystallization of PLA.  相似文献   
70.
Abstract

The effect of intracheally administered DDT (5 mg/100 g body weight) or endosulfan (1 mg/100 g body weight) for three cosecutive days have been studied on lipid metabolism of rat lung subcellular fractions. Both the insecticides did not affect the lung weight and the protein contents of microsomes, lamellar bodies and surfactant but significantly increased the phospholipid contents of microsomal and surfactant system. Most of the neutral lipid components of lung subcellular fractions were also increased by DDT or endosulfan treatments, except that of surfactant triglycerides which were decreased by DDT treatment. DDT or endosulfan both increased the incorporation of radioactive [methyl‐3H]choline into microsomal phosphatidylcholine (PC) and surfactant dipalmitoylphosphatidylcholine (DPPC) without affecting the incorporation of radioactive [methyl‐14C]methionine, showing the increased synthesis of PC via CDPcholine pathway. The results presented in this communication showed that DDT and endosulfan, the two different chloroinsecticides have similar effects on microsomal lipid metabolism but produce different biochemical manifestations on the secretion of surfactant phospholipids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号