首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11094篇
  免费   17篇
  国内免费   41篇
安全科学   22篇
废物处理   854篇
环保管理   1356篇
综合类   1062篇
基础理论   3355篇
环境理论   2篇
污染及防治   2245篇
评价与监测   1276篇
社会与环境   976篇
灾害及防治   4篇
  2023年   59篇
  2022年   172篇
  2021年   115篇
  2020年   25篇
  2019年   48篇
  2018年   1509篇
  2017年   1421篇
  2016年   1276篇
  2015年   166篇
  2014年   93篇
  2013年   182篇
  2012年   520篇
  2011年   1417篇
  2010年   743篇
  2009年   652篇
  2008年   947篇
  2007年   1280篇
  2006年   63篇
  2005年   52篇
  2004年   55篇
  2003年   81篇
  2002年   126篇
  2001年   22篇
  2000年   17篇
  1999年   7篇
  1998年   12篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1988年   3篇
  1985年   2篇
  1984年   13篇
  1983年   12篇
  1982年   5篇
  1979年   2篇
  1965年   2篇
  1964年   2篇
  1963年   1篇
  1962年   2篇
  1961年   4篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   4篇
  1953年   1篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
The purpose of this study was to validate the use of adenosine triphosphate (ATP) for evaluating hygiene intervention effectiveness in reducing viral dissemination in an office environment. The bacterial virus MS-2 was used to evaluate two scenarios, one where the hand of an individual was contaminated and another where a fomite was contaminated. MS-2 was selected as a model because its shape and size are similar to many human pathogenic viruses. Two separate experiments were conducted, one in which the entrance door push plate was inoculated and the other in which the hand of one selected employee was inoculated. In both scenarios, 54 selected surfaces in the office were tested to assess the dissemination of the virus within the office. Associated surface contamination was also measured employing an ATP meter. More than half of the tested hands and surfaces in the office were contaminated with MS-2 within 4 h. Next, an intervention was conducted, and each scenario was repeated. Half of the participating employees were provided hand sanitizer, facial tissues, and disinfecting wipes, and were instructed in their use. A significant (p < 0.05) reduction was observed in the number of surfaces contaminated with virus. This reduction in viral spread was evident from the results of both viral culture and the surface ATP measurements, although there was no direct correlation between ATP measurements with respect to viral concentration. Although ATP does not measure viruses, these results demonstrate that ATP measurements could be useful for evaluating the effectiveness of hygiene interventions aimed at preventing viral spread in the workplace.  相似文献   
152.
Norovirus (NoV) is recognized as the most common cause of foodborne outbreaks. In 2014, an outbreak of acute gastroenteritis occurred on a cruise ship in Brazil, and NoV became the suspected etiology. Here we present the molecular identification of the NoV strains and the use of sequence analysis to determine modes of virus transmission. Food (cream cheese, tuna salad, grilled fish, orange mousse, and vegetables soup) and clinical samples were analyzed by ELISA, conventional RT-PCR, qRT-PCR, and sequencing. Genogroup GII NoV was identified by ELISA and conventional RT-PCR in fecal samples from 5 of 12 patients tested (41.7%), and in the orange mousse food sample by conventional RT-PCR and qRT-PCR. Two fecal GII NoV samples and the orange mousse GII NoV sample were successfully genotyped as GII.Pe (ORF 1), revealed 98.0–98.8% identities among them, and shared phylogenetically distinct cluster. Establishing the source of a NoV outbreak can be a challenging task. In this report, the molecular analysis of the partial RdRp NoV gene provided a powerful tool for genotyping (GII.Pe) and tracking of outbreak-related samples. In addition, the same fast and simple extraction methods applied to clinical samples could be successfully used for complex food matrices, and have the potential to be introduced in routine laboratories for screening foods for presence of NoV.  相似文献   
153.
Environmental surveillance of poliovirus (PV) and other non-enveloped viruses can help identify silent circulation and is necessary to certify eradication. The bag-mediated filtration system is an efficient method to filter large volumes of environmental waters at field sites for monitoring the presence of viruses. As filters may require long transit times to off-site laboratories for processing, viral inactivation or overgrowth of bacteria and fungi can interfere with virus detection and quantification (Miki and Jacquet in Aquatic Microb Ecol 51(2):195–208, 2008). To evaluate virus survival over time on ViroCap? filters, the filters were seeded with PV type 1 (PV1) and/or MS2 and then dosed with preservatives or antibiotics prior to storage and elution. These filters were stored at various temperatures and time periods, and then eluted for PV1 and MS2 recovery quantification. Filters dosed with the preservative combination of 2% sodium benzoate and 0.2% calcium propionate had increased virus survival over time when stored at 25 °C, compared to samples stored at 25 °C with no preservatives. While elution within 24 h of filtration is recommended, if storage or shipping is required then this preservative mixture can help preserve sample integrity. Addition of an antibiotic cocktail containing cephapirin, gentamicin, and Proclin? 300 increased recovery after storage at 4 and 25 °C, when compared to storage with no antibiotics. The antibiotic cocktail can aid sample preservation if access to appropriate antibiotics storage is available and sample cold chain is unreliable. This study demonstrated that the use of preservatives or antibiotics is a simple, cost-effective method to improve virus detection from ViroCap cartridge filters over time.  相似文献   
154.
155.
156.
PCR inhibitory substances in complex sample matrices can cause false negatives or under-estimation of target concentration. This study assessed DNA heat treatment for reducing inhibition during qPCR analysis of human adenovirus (HAdV) in wastewater samples. Inhibition was reduced by heat treating DNA, where mean HAdV concentration was increased by 0.71 log10 GC/L (and up to 3.04 log10 GC/L in one case), and replicate variability and false negatives were reduced. DNA heat treatment should be further investigated for improving reliability of HAdV concentration estimates in water, which can support more accurate assessment of health risks associated with viral pathogen exposure.  相似文献   
157.
158.
The capability of a cost-effective and a small size decentralized pilot wastewater treatment plant (WWTP) to remove enteric viruses such as rotavirus, norovirus genogroup I (GGI), norovirus genogroup II (GGII), Hepatitis E virus (HEV), and adenovirus was studied. This pilot plant is an integrated hybrid anaerobic/aerobic setup which consisted of anaerobic sludge blanket (UASB), biological aerated filter (BAF), and inclined plate settler (IPS). Both the UASB and BAF are packed with a non-woven polyester fabric (NWPF). Results indicated that the overall log10 reductions of enteric viruses’ genome copies through the whole system were 3.1 ± 1, 3.3 ± 0.5, and 2.6 ± 0.9 log10 for rotavirus, norovirus GGI, and adenovirus, respectively. Reduction efficiency for both norovirus GGII and HEV after the different treatment steps could not be calculated because there were no significant numbers of positive samples for both viruses. The overall reduction of rotavirus infectious units through the whole system was 2.2 ± 0.8 log10 reduction which is very close to the overall log10 reduction of adenovirus infectious units through the whole system which was 2.1 ± 0.8 log10 reduction. There was no considerable difference in the removal efficiency for different rotavirus G and P types. Adenovirus 41 was the only type detected in the all positive samples. Although the pilot WWTP investigated is cost effective, has a small footprint, does not need a long distance network pipes, and easy to operate, its efficiency to remove enteric viruses is comparable with the conventional centralized WWTPs.  相似文献   
159.
This work demonstrates the feasibility of meso-scale (100 μm to mm) punching of multiple holes of intricate shapes in metals. Analytical modeling, finite element (FE) simulation, and experimentation are used in this work. Two-dimensional FE simulations in ABAQUS were done with an assumed material modeling and plane-strain condition. A known analytical model was used and compared with the ABAQUS simulation results to understand the effects of clearance between the punch and the die. FE simulation in ABAQUS was done for different clearances and corner radii of the punch, die, and holder. To complement modeling with real experiments and for the purpose of comparison, a set of punches and dies were made to punch out a miniature spring-steel gripper. Comparison of compliant grippers made by wire-cut electro discharge machining (EDM) and punching shows that realizing sharp interior and re-entrant corners by punching is not easy to achieve. However, the promise of realizing meso-scale parts with complicated shapes through punching is demonstrated in this work; and further work is identified and some strategies are suggested for improvement. The main contribution of this paper is in adapting the well-established punching and blanking operations to the meso-scale as a viable alternative to making miniature devices currently dominated by lithography-based techniques.  相似文献   
160.
Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号