Environmental Science and Pollution Research - The rapid industrialization and urbanization of intra- and peri-urban areas at the world scale are responsible for the degradation of the quality of... 相似文献
Two headwaters located in southwest France were monitored for 3 and 2 years (Auvézère and Aixette watershed, respectively) with two sampling strategies: grab and passive sampling with polar organic chemical integrative sampler (POCIS). These watersheds are rural and characterized by agricultural areas with similar breeding practices, except that the Auvézère watershed contains apple production for agricultural diversification and the downstream portion of the Aixette watershed is in a peri-urban area. The agricultural activities of both are extensive, i.e., with limited supply of fertilizer and pesticides. The sampling strategies used here give specific information: grab samples for higher pesticide content and POCIS for contamination background noise and number of compounds found. Agricultural catchments in small headwater streams are characterized by a background noise of pesticide contamination in the range of 20–70 ng/L, but there may also be transient and high-peak pesticide contamination (2000–3000 ng/L) caused by rain events, poor use of pesticides, and/or the small size of the water body. This study demonstrates that between two specific runoff events, contamination was low; hence the importance of passive sampler use. While the peak pesticide concentrations seen here are a toxicity risk for aquatic life, the pesticide background noise of single compounds do not pose obvious acute nor chronic risks; however, this study did not consider the risk from synergistic “cocktail” effects. Proper tools and sampling strategies may link watershed activities (agricultural, non-agricultural) to pesticides detected in the water, and data from both grab and passive samples can contribute to discussions on environmental effects in headwaters, an area of great importance for biodiversity. 相似文献
Oxalic acid in individual aerosol particles was measured using single particle aerosol time-of-flight mass spectrometry (ATOFMS) in the summer of 2007 in Shanghai, China. Oxalate was found in 3.4% of total particles with diameters in the range of 0.2 – 2.0 μm. Size, chemical composition and hourly temporal counts of single particles that contained oxalic acid were measured. The predominant types of oxalate-containing particles were characterized to distinguish the primary and secondary sources of oxalic acid. Biomass burning was revealed as a major primary source of oxalic acid which contributed more than 20% of the oxalate-containing particles. Evidences for two different formation pathways of oxalic acid were observed in our experiment. The number fraction of oxalate-containing particles correlated with that of sulfate particles and the changes of air parcel backward trajectories, suggesting that in-cloud processing played important roles in oxalic acid formation. The diurnal patterns of dust and sea salt particle counts fitted well with the ambient relative humidity variation, suggesting that heterogeneous reactions occurring in hydrated/deliquesced aerosols also contributed to the production of oxalic acid. 相似文献
The uptake, translocation, and human bioaccessibility of metals originating from atmospheric fine particulate matters (PM) after foliar exposure is not well understood. Lettuce (Lactuca sativa L.) plants were exposed to micronic PbO, CuO, and CdO particulate matters (PMs) by the foliar pathway and mature plants (6 weeks old) were analyzed in terms of: (1) metal accumulation and localization on plant leaf surface, and metal translocation factor (TF) and global enrichment factor (GEF) in the plants; (2) shoot growth, plant dry weight (DW), net photosynthesis (Pn), stomatal conductance (Gs), and fatty acid ratio; (3) metal bioaccessibility in the plants and soil; and (4) the hazard quotient (HQ) associated with consumption of contaminated plants. Substantial levels of metals were observed in the directly exposed edible leaves and newly formed leaves of lettuce, highlighting both the possible metal transfers throughout the plant and the potential for human exposure after plant ingestion. No significant changes were observed in plant biomass after exposure to PbO, CuO, and CdO-PMs. The Gs and fatty acid ratio were increased in leaves after metal exposure. A dilution effect after foliar uptake was suggested which could alleviate metal phytotoxicity to some degree. However, plant shoot growth and Pn were inhibited when the plants are exposed to PbO, and necrosis enriched with Cd was observed on the leaf surface. Gastric bioaccessibility of plant leaves is ranked: Cd?>?Cu?>?Pb. Our results highlight a serious health risk of PbO, CuO, and CdO-PMs associated with consumption of vegetables exposed to these metals, even in newly formed leaves in the case of PbO and CdO exposure. Finally, the study highlights the fate and toxicity of metal rich-PMs, especially in the highly populated urban areas which are increasingly cultivated to promote local food.
Environmental Science and Pollution Research - Natural steroid estrogens (NSEs), including free estrogens (FEs) and conjugated estrogens (CEs), are of emerging concern globally among public and... 相似文献
The disposal of organic waste by the biocomposting of black soldier fly larvae (BSFL) has drawn broad attention. However, the discrepancies in heavy metal immobilization between BSFL biocomposting with different inoculation densities and aerobic composting need to be further researched. In this study, BSFL with inoculation densities of 0.08%, 0.24% and 0.40% was added to swine manure to investigate its influence on heavy metal bioaccumulation and bioavailability. The physicochemical properties, BSFL growth performance and amino acid contents were measured. The results showed that the germination index, total prepupal yield and bioavailable fraction removal rate (%) of Cr and Pb at an inoculation density of 0.40% of BSFL were the highest among all of the BSFL biocomposting groups. Although the bioaccumulation factor and heavy metal (Cd, Cr, Cu and Zn) concentrations of the BSFL body from swine manure with inoculation densities of 0.24% and 0.40% of BSFL were similar, the BSFL inoculation density of 0.40% had the best absorption effect on these heavy metals in terms of total prepupal yield. Therefore, this study provides a basis for exploring the optimal inoculation density of BSFL biocomposting to reduce the harmful effects of heavy metals in swine manure.
Environmental Science and Pollution Research - The aim of the study was to determine if gold-mining activities could impact the mercury (Hg) concentrations and isotopic signatures in freshwater... 相似文献