An ‘I see you’ (ISY) prey–predator signal can co-evolve when such a signal benefits both prey and predator. The prey benefits if, by producing the signal, the predator is likely to break off an attack. The predator benefits if it is informed by the signal that the prey is aware of its presence and can break off what is likely to be an unsuccessful and potentially costly hunt. Because the signal and response co-evolve in two species, the behaviour underlying an ISY signal is expected to have a strong genetic component and cannot be entirely learned. An example of an ISY signal is the ‘shimmering’ behaviour performed by Asian hive bee workers in the presence of their predator Vespa velutina. To test the prediction that bee–hornet signalling is heritable, we let honey bee workers of two species emerge in an incubator so that they had never been exposed to V. velutina. In Apis cerana, the shimmering response developed 48 h post-emergence, was strong after 72 h and increased further over 2 weeks. In contrast, A. mellifera, which has evolved in the absence of Asian hornets, did not produce the shimmering signal. In control tests, A. cerana workers exposed to a non-threatening butterfly did not respond with the shimmering signal. 相似文献
Decomposition of simulated odors in municipal wastewater treatment plants was investigated experimentally by a wire-plate pulse corona reactor. A new type of high pulse voltage source with a thyratron switch and a Blumlein pulse forming network (BPFN) was adopted in our experiments, and the testing malodorants were ammonia, ethanethiol and tri-methyl amine, respectively. The maximum output power of the pulse voltage source and the maximum peak voltage were 1 kW and 100 kV. The experiments were conducted at the gas-flow rate of 4.0-23.0 m3 h(-1). Important parameters, including peak voltage, pulse frequency, capacitance (inductance) of the BPFN, gas-flow rate, initial concentration, which influenced on the removal efficiency, were investigated. The results show that the odors can be treated effectively. Almost 100% removal efficiency was obtained for 32 mg m(-3) ammonia at the gas-flow rate of 4.0 m(3) h(-1). The maximum removal efficiencies of 85 mg m(-3) ethanethiol and 750 mg m(-3) tri-methyl amine at 10.0 m(3) h(-1) were 98% and 91%, respectively. The energy yield of 110 mg m(-3) ammonia was 2.99 g kWh(-1) when specific energy density was 106 Jl(-1). In the cases of ammonia, ethanethiol and tri-methyl amine removal, ozone and nitrogen oxides were observed in the exit gas. The carbon and sulfur elements of ethanethiol and tri-methyl amine were mainly converted to carbon dioxide, carbon monoxide and sulfur dioxide. Moreover, the ammonium nitrates and sulfur were discovered in the reactor. 相似文献
Primary sources of particulate matter (PM) were analyzed by suspending powdered samples into an aerosol laser ablation mass spectrometer (LAMS). PM sources studied included vehicle exhaust particulates, dust from a non-ferrous smelter, cement powder, incinerator fly ash, two coal fly ash samples, and two soils. Marker peaks signified certain PM source sectors: construction particles could be distinguished by abundant Ca and Ca compounds, fuel combustion was marked by elemental carbon clusters, and nonferrous industrial particles showed inorganic As, Cu, Pb, Zn, and SOx. In addition to the distinction between particles from these different source sectors, mass spectral results also showed that for a single source, different particle types existed, and among different sources within a sector, similar spectra were present. The aerosol LAMS results show the difficulty in differentiating among separate fly ash sources as well as among different soil samples. A particle class balance receptor model that measures the amount of specific particle types rather than the amount of a chemical component is suggested as a means of source apportionment when particle spectra with overlapping source possibilities occur. The assumptions and limitations of receptor modeling aerosol LAMS data are also described. In particular, methods need to be developed to account for the contribution of secondary sources. 相似文献
Determining human exposure to suspended particulate concentrations requires measurements that quantify different particle properties in microenvironments where people live, work, and play. Particle mass, size, and chemical composition are important exposure variables, and these are typically measured with time-integrated samples on filters that are later submitted to laboratory analyses. This requires substantial sample handling, quality assurance, and data reduction. Newer technologies are being developed that allow in-situ, time-resolved measurements for mass, carbon, sulfate, nitrate, particle size, and other variables. These are large measurement systems that are more suitable for fixed monitoring sites than for personal applications. Human exposure studies need to be designed to accomplish specific objectives rather than to serve too many purposes. Resources need to be divided among study design, field sampling, laboratory analysis, quality assurance, data management, and data analysis phases. Many exposure projects allocated too little to the non-measurement activities. 相似文献
In this study, the marine microalgae Skeletonema costatum and Nitzschia closterium were exposed to different forms of copper, such as a metal salt (Cu2+), a nano-metal (nano-Cu), and nano-metal oxide (nano-CuO). During a 96-h exposure to nanoparticles (NPs) and salt, the cell number, Cu2+ concentration in the culture medium, morphology, and intracellular amino acids were measured to assess the toxicity of the copper materials and the toxicity mechanism of the NPs. As results, the toxicity of Cu2+, nano-Cu, and nano-CuO to marine phytoplankton decreased in order. The EC50 values of Cu2+ and nano-Cu for S. costatum and N. closterium ranged from 0.356 to 0.991 mg/L and 0.663 to 2.455 mg/L, respectively. Nano-Cu inhibits the growth of marine phytoplankton by releasing Cu2+; however, nano-CuO is harmful to microalgae because of the effect of NPs. The secretion of extracellular polymeric substances by microalgae could also affect the toxicity of nano-Cu and nano-CuO to microalgae. S. costatum was more sensitive to copper than N. closterium. Cu2+, nano-Cu, and nano-CuO all reduced per-cell amino acids and the total output of algae-derived amino acids by affecting the growth of the phytoplankton. This study helps to understand the risk assessment of nano-Cu and nano-CuO to marine microalgae.