首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1677篇
  免费   103篇
  国内免费   721篇
安全科学   78篇
废物处理   130篇
环保管理   114篇
综合类   1031篇
基础理论   291篇
环境理论   3篇
污染及防治   582篇
评价与监测   89篇
社会与环境   52篇
灾害及防治   131篇
  2023年   25篇
  2022年   98篇
  2021年   92篇
  2020年   52篇
  2019年   57篇
  2018年   63篇
  2017年   70篇
  2016年   90篇
  2015年   109篇
  2014年   125篇
  2013年   133篇
  2012年   131篇
  2011年   154篇
  2010年   134篇
  2009年   108篇
  2008年   108篇
  2007年   74篇
  2006年   95篇
  2005年   53篇
  2004年   69篇
  2003年   48篇
  2002年   58篇
  2001年   53篇
  2000年   60篇
  1999年   59篇
  1998年   60篇
  1997年   64篇
  1996年   47篇
  1995年   49篇
  1994年   29篇
  1993年   38篇
  1992年   20篇
  1991年   22篇
  1990年   11篇
  1989年   5篇
  1988年   8篇
  1987年   10篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   5篇
  1930年   1篇
排序方式: 共有2501条查询结果,搜索用时 187 毫秒
771.
Methylmercury (MeHg) production in paddy soils and its accumulation in rice raise global concerns since rice consumption has been identified as an important pathway of human exposure to MeHg. Sulfur (S) amendment via fertilization has been reported to facilitate Hg methylation in paddy soils under anaerobic conditions, while the dynamic of S-amendment induced MeHg production in soils with increasing redox potential remains unclear. This critical gap hinders a comprehensive understanding of Hg biogeochemistry in rice paddy system which is characterized by the fluctuation of redox potential. Here, we conducted soil incubation experiments to explore MeHg production in slow-oxidizing paddy soils amended with different species of S and doses of sulfate. Results show that the elevated redox potential (1) increased MeHg concentrations by 10.9%−35.2%, which were mainly attributed to the re-oxidation of other S species to sulfate and thus the elevated abundance of sulfate-reducing bacteria, and (2) increased MeHg phytoavailability by up to 75% due to the reductions in acid volatile sulfide (AVS) that strongly binds MeHg in soils. Results obtained from this study call for attention to the increased MeHg production and phytoavailability in paddy soils under elevated redox potentials due to water management, which might aggravate the MeHg production induced by S fertilization and thus enhance MeHg accumulation in rice.  相似文献   
772.
UV/peroxymonosulfate (UV/PMS) advanced oxidation process has attracted significant attention for removal of micropollutants in water. However, during practical water treatment applications, the PMS treatment must be performed before the UV treatment to achieve full contact. In this study, sulfamethoxazole (SMX) was selected as the target micropollutant. Four different operational approaches, including UV alone, PMS alone, simultaneous UV/PMS and sequential PMS-UV, were compared for their differences in SMX removal and disinfection by-product (DBP) formation potentials during chlorine-driven disinfection. Among the four approaches, UV/PMS and PMS-UV achieved over 90% removal efficiencies for SMX without substantial differences. For raw water, the trichloronitromethane (TCNM) formation potential after treatment with PMS-UV was lower than that after UV/PMS treatment. The time interval over which the PMS-UV process was conducted had little effect on the final removal efficiency for SMX. However, a brief (5 min) pre-PMS treatment significantly reduced the TCNM formation potential and the genotoxicity from DBPs. The formation risk for TCNM during chlorination increased markedly with increasing PMS dosages, and the appropriate dosage under these experimental conditions was suggested to be 0.5–1.0 mmol/L. Under alkaline conditions, PMS-UV treatment can enhance SMX degradation as well as dramatically reduced the formation potentials for haloketones, haloacetonitriles and halonitromethanes. This study suggests that proper optimization of UV/PMS processes can remove SMX and reduce its DBP formation.  相似文献   
773.
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.  相似文献   
774.
The passive sampling technique, diffusive gradients in thin films (DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been questioned because of the small effective sampling area (3.1 cm2). In this study, we developed a DGT probe for rapid sampling of eight PFAS in waters and applied it to a water-sediment system. It has a much larger sampling area (27 cm2) and as a result lower method quantification limits (0.15 – 0.21 ng/L for one-day deployment and 0.02 – 0.03 ng/L for one-week deployment) and much higher (by > 10 factors) sampling rate (100 mL/day) compared to the standard DGT (piston configuration). The sampler could linearly accumulate PFAS from wastewater, was sensitive enough even for a 24 hr deployment with performance comparable to grab sampling (500 mL). The DGT probe provided homogeneous sampling performance along the large exposure area. The use of the probe to investigate distributions of dissolved PFAS around the sediment-water interface was demonstrated. This work, for the first time, demonstrated that the DGT probe is a promising monitoring tool for trace levels of PFAS and a research tool for studying their distribution, migration, and fate in aquatic environments including the sediment-water interface.  相似文献   
775.
The adsorption behaviors of ciprofloxacin (CIP), a fluoroquinolone antibiotic, onto goethite (Gt) in the presence of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) were investigated. Results showed that CIP adsorption kinetics in Gt with or without NPs both followed the pseudo-second-order kinetic model. The presence of AgNPs or TiO2NPs inhibited the adsorption of CIP by Gt. The amount of inhibition of CIP sorption due to AgNPs was decreased with an increase of solution pH from 5.0 to 9.0. In contrast, in the presence of TiO2NPs, CIP adsorption by Gt was almost unchanged at pHs of 5.0∼6.5 but was decreased with an increase of pH from 6.5 to 9.0. The mechanisms of AgNPs and TiO2NPs in inhibiting CIP adsorption by Gt were different, which was attributed to citrate coating of AgNPs resulting in competition with CIP for adsorption sites on Gt, while TiO2NPs could compete with Gt for CIP adsorption. Additionally, CIP was adsorbed by Gt or TiO2NPs through a tridentate complex involving the bidentate inner-sphere coordination of the deprotonated carboxylic group and hydrogen bonding through the adjacent carbonyl group on the quinoline ring. These findings advance our understanding of the environmental behavior and fate of fluoroquinolone antibiotics in the presence of NPs.  相似文献   
776.
We first present preparation of MnOx–CeO_2–Al_2O_3 catalysts with varying Mn contents through a self-propagating high-temperature synthesis(SHS) method, and studied the application of these catalysts to the selective catalytic reduction of NOxwith NH3(NH_3-SCR).Using the catalyst with 18 wt.% Mn(18 MnCe1Al2), 100% NO conversion was achieved at 200°C and a gas hourly space velocity of 15384 hr-1, and the high-efficiency SCR temperature window, where NO conversion is greater than 90%, was widened to a temperature range of 150–300°C. 18 MnCe1Al2 showed great resistance to SO_2(100 ppm)and H_2O(5%) at 200°C. The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller(BET) analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and H_2 temperature programmed reduction. The characterization results showed that the surface atomic concentration of Mn increased with increasing Mn content, which led to synergism between Mn and Ce and improved the activity in the SCR reaction. 18 MnCe1Al2 has an extensive pore structure,with a BET surface area of approximately 135.4 m~2/g, a pore volume of approximately 0.16 cm~3/g, and an average pore diameter of approximately 4.6 nm. The SCR reaction on 18 MnCe1Al2 mainly followed the Eley-Rideal mechanism. The performances of the MnOx–CeO_2–Al_2O_3 catalysts were good, and because of the simplicity of the preparation process,the SHS method is applicable to their industrial-scale manufacture.  相似文献   
777.
A column microcosm was conducted by amending crude oil into Dagang Oilfield soil to simulate the bioremediation process. The dynamic change of microbial communities and metabolic genes in vertical depth soil from 0 to 80 cm were characterized to evaluate the petroleum degradation potential of indigenous microorganism. The influence of environmental variables on the microbial responds to petroleum contamination were analyzed. Degradation extent of 42.45% of n-alkanes(C8–C40) and 34.61% of 16ΣPAH were reached after 22 weeks. Relative abundance of alkB, nah, and phe gene showed about 10-fold increment in different depth of soil layers. Result of HTS profiles demonstrated that Pseudomonas, Marinobacter and Lactococcus were the major petroleum-degrading bacteria in0–30 and 30–60 cm depth of soils. Fusarium and Aspergillus were the dominant oil-degrading fungi in the 0–60 cm depth of soils. In 60–80 cm deep soil, anaerobic bacteria such as Bacteroidetes, Lactococcus, and Alcanivorax played important roles in petroleum degradation.Redundancy analysis(RDA) and correlation analysis demonstrated that petroleum hydrocarbons(PHs) as well as soil salinity, clay content, and anaerobic conditions were the dominant effect factors on microbial community compositions in 0–30, 30–60, and 60–80 cm depth of soils, respectively.  相似文献   
778.
Persulfate activation has been applied as one of the efficient advanced oxidation processes(AOPs) to remediate polluted environments. In this study, a novel α-FeOOH anchored by graphene oxide(GO)-carbon nanotubes(CNTs) aerogel(α-FeOOH@GCA) nanocomposite activated persulfate system(α-FeOOH@GCA + K_2S_2O_8) was applied for decolorization of Orange Ⅱ(OⅡ). The decolorization of OⅡ was remarkably enhanced to a level of ~ 99% in this system compared with that of pristine α-FeOOH(~ 44%) or GO-CNTs(~18%). The enhanced catalytic activity of α-FeOOH@GCA was due to the formation of a heterojunction byα-FeOOH and GO-CNTs as confirmed by the presence of Fe–O–C chemical bonds. The degradation intermediates of OⅡ were comprehensively identified. The proposed degradation pathway of OⅡ begins with the destruction of the conjugated structures of OⅡ by the dominant reactive oxygen species, surface-bound SO_4~(·-). The decolorization efficiency of OⅡ by the α-FeOOH@GCA activated persulfate system decreased from the first to third cycle of recycling. Ultraviolet(UV) irradiation or introduction of a small amount of Fe~(2+) could restore the activation of this system. The results show that the α-FeOOH@GCA persulfate activation system promises to be a highly efficient environmental remediation method for organic pollutants.  相似文献   
779.
Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper–ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process.  相似文献   
780.
厌氧-厌氧氨氧化组合工艺作为低能耗脱氮工艺,如何提供适宜比例的亚硝酸盐成为研究的关键问题之一.部分反硝化为稳定提供厌氧氨氧化所需的亚硝酸盐提供了可行途径.本文重点针对厌氧工艺中可能产生的中长链脂肪酸对反硝化过程的影响进行研究,筛选出两株具有反硝化能力的细菌Pseudomonas veronii(W-22)和Pseudomonas alcaliphila(W-39),通过批次试验,考察了中长链脂肪酸和常用碳源对菌株反硝化性能的影响.结果表明,在硝酸盐浓度为100 mg·L~(-1),C/N=15,30℃条件下,W-22利用葡萄糖、W-39利用乙醇和葡萄糖,可在36 h内达到稳定的亚硝酸盐累积,亚硝酸盐最大累积速率(R_m)分别为2.50、5.56和8.35 mg·L~(-1)·h~(-1),亚硝酸盐浓度分别维持在57.11、82.14和80.16 mg·L~(-1);W-39利用己酸钠为碳源的R_m为0.99 mg·L~(-1)·h~(-1),亚硝酸盐浓度逐渐升高至72.34 mg·L~(-1);W-22和W-39利用辛酸钠的反应迟滞期在57 h以上,后期伴随硝酸盐浓度降低和亚硝酸盐浓度升高,R_m分别为0.97和7.17 mg·L~(-1)·h~(-1).在本研究条件下,碳源类型对菌株反硝化进程的影响存在差异.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号