首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
  国内免费   3篇
安全科学   5篇
废物处理   11篇
环保管理   3篇
综合类   6篇
基础理论   9篇
污染及防治   26篇
评价与监测   9篇
  2023年   2篇
  2022年   6篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2007年   2篇
  2006年   3篇
  2004年   3篇
  2002年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
51.
Landfill fugitive methane emissions were quantified as a function of climate type and cover type at 20 landfills using U.S. Environmental Protection Agency (EPA) Other Test Method (OTM)-10 vertical radial plume mapping (VRPM) with tunable diode lasers (TDLs). The VRPM data were initially collected as g CH4/sec emission rates and subsequently converted to g CH4/m2/day rates using two recently published approaches. The first was based upon field tracer releases of methane or acetylene and multiple linear regression analysis (MLRM). The second was a virtual computer model that was based upon the Industrial Source Complex (ISC3) and Pasquill plume stability class models (PSCMs). Calculated emission results in g CH4/m2/day for each measured VRPM with the two approaches agreed well (r 2 = 0.93). The VRPM data were obtained from the working face, temporary soil, intermediate soil, and final soil or synthetic covers. The data show that methane emissions to the atmosphere are a function of climate and cover type. Humid subtropical climates exhibited the highest emissions for all cover types at 207, 127, 102, and 32 g CH4/m2/day, for working face (no cover), temporary, intermediate, and final cover, respectively. Humid continental warm summers showed 67, 51, and 27 g CH4/m2/day for temporary, intermediate, and final covers. Humid continental cool summers were 135, 40, and 26 g CH4/m2/day for the working face, intermediate, and final covers. Mediterranean climates were examined for intermediate and final covers only and found to be 11 and 6 g CH4/m2/day, respectively, whereas semiarid climates showed 85, 11, 3.7, and 2.7 g CH4/m2/day for working face, temporary, intermediate, and final covers. A closed, synthetically capped landfill covered with soil and vegetation with a gas collection system in a humid continental warm summer climate gave mostly background methane readings and average emission rates of only 0.09 g CH4/m2/day flux when measurable.

Implications The OTM-10 method is being proposed by EPA to quantify surface methane emissions from landfill covers. This study of 20 landfills across the United States was done to determine the efficacy of using OTM-10 for this purpose. Two recently published models were used to evaluate the methane flux results found with VRPM optical remote sensing. The results should provide a sense of the practicality of the method, its limitations at landfills, and the impact of climate upon the cover's methane flux. Measured field data may assist landfill owners in refining previously modeled methane emission factor default values.  相似文献   
52.
53.
The Bayesian Poisson–Gamma hierarchy, leading to the negative binomial distribution, has been the standard practice in developing accident prediction models. To linearize the relationship connecting the mean of the negative binomial distribution to relevant covariates, a canonical log link has traditionally been used. Typically, little information is available regarding the choice of a particular link. To avoid link misspecification, it is proposed to nest the canonical log link model within a generalized link family and subsequently use the full Bayes method for parameter estimation, performance evaluation and inference. The proposed approach was applied to a sample of accident and traffic volume data corresponding to 99 intersections in the city of Edmonton, Alberta. The results showed that both the generalized link model and the traditional canonical link model provided adequate fit to the data. However, the Bayes factor provided a clear statistical support for the use of the generalized link approach. A procedure for link validation is also described. It allows the users (e.g., road authorities) to consider the changes in predicted accidents that will result if a generalized link is used instead of a canonical link. If a certain maximal change is tolerated, the canonical link can be used to analyze the data; otherwise the generalized link is worth the extra efforts and should be adopted. When compared with the traditional approach, the generalized link model was found to predict a lower number of accidents whenever there is a heavy traffic at the major approach, especially if combined with light flow on the minor approach. The paper concludes by identifying out areas for further research.  相似文献   
54.
Observations on the methane oxidation capacity of landfill soils   总被引:1,自引:0,他引:1  
The objective of this study was to determine the role of CH4 loading to a landfill cover in the control of CH4 oxidation rate (g CH4 m−2 d−1) and CH4 oxidation efficiency (% CH4 oxidation) in a field setting. Specifically, we wanted to assess how much CH4 a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH4 emission and CH4 oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH4 emission and would decrease as CH4 emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH4 flux rate (CH4 loading) into the cover. When CH4 is supplied, a cover’s rate of CH4 uptake (g CH4 m−2 d−2) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH4 loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH4 delivered to it.  相似文献   
55.
Landfill fugitive methane emissions were quantified as a function of climate type and cover type at 20 landfills using US. Environmental Protection Agency (EPA) Other Test Method (OTM)-10 vertical radial plume mapping (VRPM) with tunable diode lasers (TDLs). The VRPM data were initially collected as g CH4/sec emission rates and subsequently converted to g CH4/m2/ day rates using two recently published approaches. The first was based upon field tracer releases of methane or acetylene and multiple linear regression analysis (MLRM). The second was a virtual computer model that was based upon the Industrial Source Complex (ISC3) and Pasquill plume stability class models (PSCMs). Calculated emission results in g CH4/m2/day for each measured VRPM with the two approaches agreed well (r2 = 0.93). The VRPM data were obtained from the working face, temporary soil, intermediate soil, and final soil or synthetic covers. The data show that methane emissions to the atmosphere are a function of climate and cover type. Humid subtropical climates exhibited the highest emissions for all cover types at 207, 127, 102, and 32 g CH4/m2/day, for working face (no cover), temporary, intermediate, and final cover, respectively. Humid continental warm summers showed 67, 51, and 27 g CH4/m2/day for temporary, intermediate, and final covers. Humid continental cool summers were 135, 40, and 26 g CH4/m2/day for the working face, intermediate, and final covers. Mediterranean climates were examined for intermediate and final covers only and found to be 11 and 6 g CH4/m2/day, respectively, whereas semiarid climates showed 85, 11, 3.7, and 2.7 g CH4/m2/day for working face, temporary, intermediate, and final covers. A closed, synthetically capped landfill covered with soil and vegetation with a gas collection system in a humid continental warm summer climate gave mostly background methane readings and average emission rates of only 0.09 g CH4/m2/day flux when measurable.  相似文献   
56.
57.
The sediment compartment has the ability to trap large amounts of radionuclides and to indicate the radiological impact of pollution. The present work shows the results obtained related to the concentrations of 137Cs and natural radionuclides in sediment in the Burullus Lake, Egypt. The average values of 226Ra, 232Th, and 40K in the bottom sediments collected from the east of the Burullus Lake ranged from 10.3 to 21.8 Bq/kg, from 11.9 to 34.4 Bq/kg, and from 268 to 401 Bq/kg, respectively. The study has shown that 40K concentration is nearly uniform throughout the studied area while 226Ra and 232Th are more concentrated in the northeastern shore. Lake sediments showed contamination with 137Cs (2.7–15.9 Bq/kg). The 137Cs sediment activities indicated higher concentrations in the off-shore sites. Concentrations of all γ -ray emitting radionuclides except 40K in water samples were below the detection limits. The 40K sediment–water distribution coefficients of the near-shore samples were higher than the off-shore samples.  相似文献   
58.
The addition of readily available high strength organic wastes such as fats, oils, and grease (FOG) from restaurant grease abatement devices may substantially increase biogas production from anaerobic digesters at wastewater treatment facilities. This FOG addition may provide greater economic incentives for the use of excess biogas to generate electricity, thermal, or mechanical energy. Co-digestion of FOG with municipal biosolids at a rate of 10–30% FOG by volume of total digester feed caused a 30–80% increase in digester gas production in two full scale wastewater biosolids anaerobic digesters (Bailey, 2007, Muller et al., 2010). Laboratory and pilot scale anaerobic digesters have shown even larger increases in gas production. However, anaerobic digestion of high lipid wastes has been reported to cause inhibition of acetoclastic and methanogenic bacteria, substrate, and product transport limitation, sludge flotation, digester foaming, blockages of pipes and pumps, and clogging of gas collection and handling systems. This paper reviews the scientific literature on biogas production, inhibition, and optimal reactor configurations, and will highlight future research needed to improve the gas production and overall efficiency of anaerobic co-digestion of FOG with biosolids from municipal wastewater treatment.  相似文献   
59.
The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg?1 (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg?1 from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10?8 to 10?7 m s?1 which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12 L Mg?1, respectively, was similar to the measured settlement of 15% and 5–8% strain, respectively (Abichou et al., 2013). The increase in net liquid volume in the As-Built cells indicates that the 37% (average) measured settlement strain in these cells cannot be due to consolidation as the waste mass did not lose any moisture but rather suggests that settlement was attributable to lubrication of waste particle contacts, softening of flexible porous materials, and additional biological degradation.  相似文献   
60.
ABSTRACT

As part of the global effort to quantify and manage anthropogenic greenhouse gas emissions, there is considerable interest in quantifying methane emissions in municipal solid waste landfills. A variety of analytical and experimental methods are currently in use for this task. In this paper, an optimization-based estimation method is employed to assess fugitive landfill methane emissions. The method combines inverse plume modeling with ambient air methane concentration measurements. Three different measurement approaches are tested and compared. The method is combined with surface emission monitoring (SEM), above ground drone emission monitoring (DEM), and downwind plume emission monitoring (DWPEM). The methodology is first trialed and validated using synthetic datasets in a hand-generated case study. A field study is also presented where SEM, DEM and DWPEM are tested and compared. Methane flux during two-days measurement campaign was estimated to be between 228 and 350 g/s depending on the type of measurements used. Compared to SEM, using unmanned aerial systems (UAS) allows for a rapid and comprehensive coverage of the site. However, as showed through this work, advancement of DEM-based methane sampling is governed by the advances that could be made in UAS-compatible measurement instrumentations. Downwind plume emission monitoring led to a smaller estimated flux compared with SEM and DEM without information about positions of major leak points in the landfill. Even though, the method is simple and rapid for landfill methane screening. Finally, the optimization-based methodology originally developed for SEM, shows promising results when it is combined with the drone-based collected data and downwind concentration measurements. The studied cases also discovered the limitations of the studied sampling strategies which is exploited to identify improvement strategies and recommendations for a more efficient assessment of fugitive landfill methane emissions.

Implications: Fugitive landfill methane emission estimation is tackled in the present study. An optimization-based method combined with inverse plume modeling is employed to treat data from surface emission monitoring, drone-based emission monitoring and downwind plume emission monitoring. The study helped revealing the advantages and the limitations of the studied sampling strategies. Recommendations for an efficient assessment of landfill methane emissions are formulated. The method trialed in this study for fugitive landfill methane emission could also be appropriate for rapid screening of analogous greenhouse gas emission hotspots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号