首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   1篇
  国内免费   7篇
安全科学   14篇
废物处理   20篇
环保管理   28篇
综合类   70篇
基础理论   49篇
污染及防治   128篇
评价与监测   41篇
社会与环境   19篇
灾害及防治   1篇
  2023年   7篇
  2022年   7篇
  2021年   10篇
  2020年   9篇
  2019年   9篇
  2018年   12篇
  2017年   5篇
  2016年   17篇
  2015年   10篇
  2014年   18篇
  2013年   29篇
  2012年   18篇
  2011年   36篇
  2010年   25篇
  2009年   23篇
  2008年   26篇
  2007年   16篇
  2006年   14篇
  2005年   12篇
  2004年   16篇
  2003年   13篇
  2002年   7篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   3篇
  1985年   3篇
  1983年   2篇
  1982年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
281.
Sundance sunflowers were subjected to contaminated solutions containing 3, 4, or 5 heavy metals, with and without EDTA. The sunflowers exhibited a metal uptake preference of Cd=Cr>Ni, Cr>Cd>Ni>As and Fe>As>Cd>Ni>Cr without EDTA and Cr>Cd>Ni, Fe>As>Cd>Cr>Ni with EDTA. As uptake was not affected by other metals, but it decreased Cd and Ni concentration in the stems. The presence of Fe improved the translocation of the other metals regardless of whether EDTA was present. In general, EDTA served as a hindrance to metal uptake. For the experiment with all five heavy metals, EDTA decreased Cd in the roots and stems from 2.11 to 1.36 and from 2.83 to 2.3 2mg g(-1) biomass, respectively. For the same conditions, Ni in the stems decreased from 1.98 to 0.94 mg g(-1) total metal uptake decreased from 14.95 mg to 13.89 mg, and total biomass decreased from 2.38 g to 1.99 g. These results showed an overall negative effect in addition of EDTA. However it is unknown whether the negative effect was due to toxicity posed by EDTA or the breaking of phytochelatin-metal bonds. The most important finding was the ability of Sundance sunflowers to achieve hyperaccumulator status for both As and Cd under all conditions studied. Ni hyperaccumulator status was only achieved in the presence of three metals without EDTA.  相似文献   
282.
The polyethylenimine (PEI) as complexing agent was used to study the complexation-ultrafiltration (CP-UF) process in the selective removal of Cu(II) from Ni(II) contained in aqueous media. Preliminary tests showed that optimal chemical conditions for Cu(II) and Ni(II) complexation by the PEI polymer were pH>6.0 and 8.0, respectively, and polymer/metal weight ratio of 3.0 and 6.0, respectively. The effect of some important operating parameters on process selectivity was studied by performing UF tests at different parameters: pH, polymer/metal weight ratio, transmembrane pressure (TMP), and membrane cut-off in a batch experimental set-up. It was observed that process selectivity was achieved by choosing the pH value for obtaining a preferential copper complexation (pH 6.0), and the polymer/metal ratio needed to bound only the copper ion (3.0). The selective separation by UF tests was performed by using both a laboratory aqueous solution and a real aqueous effluent (water from Emoli torrent, Rende (CS)). The Iris 30 membrane at TMP of 200 kPa (2 bar) for both aqueous media gave the best results. A complete nickel recovery was reached, and copper recovery was the highest for this membrane (94% and 92%). Besides at this pressure, a lower water amount was needed to obtain total nickel recovery by diafiltration. A little higher membrane fouling was obtained by using the river effluent due to the presence of dissolved organic and inorganic matter.  相似文献   
283.
The white-rot fungus Trametes versicolor degraded trichloroethylene (TCE), a highly oxidized chloroethene, and produced 2,2,2-trichloroethanol and carbon dioxide as the main products of degradation, based on the results obtained using [13C]-TCE as the substrate. For a range of concentrations of TCE between 2 and 20 mg l(-1), 53% of the theoretical maximum chloride expected from complete degradation of TCE was observed. Laccase was shown to be induced by TCE, but did not appear to play a role in TCE degradation. Cytochrome P-450 appears to be involved in TCE degradation, as evidenced by marked inhibition of degradation of TCE in the presence of 1-aminobenzotriazole, a known inhibitor of cytochrome P-450. Our results suggested that chloral (trichloroacetaldehyde) was an intermediate of the TCE degradation pathway. The results indicate that the TCE degradation pathway in T. versicolor appears to be similar to that previously reported in mammals and is mechanistically quite different from bacterial TCE degradation.  相似文献   
284.
This work aimed at comparing the dynamics of atmospheric metal accumulation by the lichen Flavoparmelia caperata and bark of Platanus hybrida over different periods of time. Transplants were exposed in three Portuguese coastal cities. Samples were retrieved (1) every 2 months (discontinuous exposure), or (2) after 2-, 4-, 6-, 8- and 10-month periods (continuous exposure), and analysed for Cu, Ni and Pb. Airborne accumulation of metals was essentially independent of climatic factors. For both biomonitors [Pb]>[Ni]>[Cu] but Pb was the only element for which a consistent pattern of accumulation was observed, with the bark outperforming the lichen. The longest exposure periods hardly ever corresponded to the highest accumulation. This might have been partly because the biomonitors bound and released metals throughout the exposure, each with its own dynamics of accumulation, but both according to the environmental metal availability.  相似文献   
285.
From 1994 to 2003, daily air concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) and carbon monoxide (CO) were regularly monitored at two traffic-oriented sampling sites (A and B) in urban Genoa, Italy. The data were used to estimate effects on air quality in real situations due to progressive substitution of EURO-0 vehicles, started in 1993, with less-polluting vehicles (EURO-1, EURO-2), mainly gasoline vehicles with a catalyst. PAH profile classification and diagnostic PAH ratios were used to identify 345 samples of predominantly traffic origin. At both sites, CO and PAH daily concentrations decreased exponentially with time and the apparent half-life values calculated were 6.3 and 5.5 for CO and 3.7 and 3.5 years for PAHs at sites A and B, respectively. At site A, monitored for traffic intensity, multiple regression analyses confirmed that daily PAH and CO concentrations were positively correlated with the number of non-catalytic vehicles estimated to cross this site during sampling and negatively correlated with seasonal variables (air temperature, ozone concentration, relative air humidity). The reduction in air pollution estimated for complete substitution of non-catalytic gasoline vehicles was 89% for BaP, 85% for total PAHs and 69% for CO.  相似文献   
286.
Background, aim, and scope  Dicofol is widely used as a pesticide in agriculture applications. Since dicofol is mainly synthesized from dichlorodiphenyltrichlorethane (DDT), it contains DDT as an impurity. The European Community has forced Prohibition Directive 79/117/EEC to reduce DDT in dicofol formulations. Specifically, DDT content in a dicofol formulation cannot exceed 0.1%. The goal of this project was to determine the DDT content in dicofol formulations used in Turkey. Materials and methods  Samples of all the dicofol formulations in Turkey were collected to quantify DDT and DDT-related compounds. Four replicates were used for each sample. GC/MS/MS was used to analyze p,p′ and o,p′ isomers of DDT, DDD, and DDE. A HPLC was used to determine p,p′-Cl-DDT concentrations. Results  The total DDT content of the formulated dicofol was found between 0.3% and 14.3%. The concentration of p,p′-DDE ranged from 167 to 1,042 mg kg−1 in dicofol samples. p,p′-DDT concentrations were found to be 32 to 183 mg kg−1. The o,p’-DDT level ranged from 2 to 34 mg kg−1 in the dicofol formulations analyzed. Discussion  It was estimated that 617.8 kg of DDT was released from dicofol. The main impurity was identified as p,p-Cl-DDT. Based on these results, dicofol serves as a continuing source of DDT contamination. Conclusions  All DDT concentrations in dicofol samples analyzed were higher than the permitted 0.1% level of Prohibition Directive 79/117/EEC. The reduction of dicofol is critical since it serves as a continual source of DDT contamination. Recommendations and perspectives  DDT has been found in soil, water, and air samples. Dicofol has been identified as a contributor to continued DDT contamination in soil and water. More studies are needed to ascertain the source of DDT in the air.  相似文献   
287.
Although pesticides have been useful in agriculture pest control, there is a considerable risk for human health and damage to ecosystems. Carbaryl is a carbamate often taken as a safe insecticide, although data on metabolic activities is still scarce, viz. mitochondrial toxicity. Therefore, it is the goal of this work to assay the compound on isolated mitochondria, a biochemical model already used with other pesticides. Mitochondria isolated from the livers of Wistar rats were assayed for bioenergetic parameters, namely mitochondrial respiration, membrane potential, membrane integrity and enzyme activities. For higher concentrations, it was observed that carbaryl has a depressive effect on mitochondrial respiration and on the generation of mitochondrial membrane potential, but with preservation of membrane integrity. A locus between Complex II and III appears particularly affected and the mitochondrial phosphorylation system relatively insensitive. Therefore, carbaryl inhibits mitochondrial respiration without affecting the phosphorylation complex. Carbaryl is toxic for mitochondria, although at concentrations higher as compared with other insecticide compounds. Mitochondrial toxicity should be excluded as one of the primary causes for carbaryl immediate toxicity, as concluded from the range of concentrations where carbaryl shows effective mitochondrial toxicity.  相似文献   
288.
Biological production of hydrogen sulfide (H(2)S) using sulfate-reducing bacteria (SRB) has important potential within environmental biotechnology. The aim of this work was to study the possibility of using SRB for the treatment of an acid mine drainage (AMD) at bench-scale. This process involved three stages: the optimization of H(2)S production through the utilization of total volatile fatty acids (TVFAs) by SRB, the establishment of a biofilm reactor for sulfide production, and the precipitation of metals by using the biologically produced H(2)S. The substrates used for TVFAs production consisted of papaya, apple and banana. The H(2)S produced from the degradation of TVFAs was utilized for the precipitation of a metal-contaminated effluent collected from Bolivar mine (Oruro, Bolivia). The maximum concentration of H(2)S obtained was approximately 16mM. Removal efficiencies of ca. 100% for copper, above 94% for zinc, and above 92% for lead were achieved.  相似文献   
289.
Labud V  Garcia C  Hernandez T 《Chemosphere》2007,66(10):1863-1871
The aim of this work was to ascertain the effects of different types of hydrocarbon pollution on soil microbial properties and the influence of a soil's characteristics on these effects. For this, toxicity bioassays and microbiological and biochemical parameters were studied in two soils (one sandy and one clayey) contaminated at a loading rate of 5% and 10% with three types of hydrocarbon (diesel oil, gasoline and crude petroleum) differing in their volatilisation potential and toxic substance content. Soils were maintained under controlled conditions (50-70% water holding capacity, and room temperature) for six months and several microbiological and toxicity parameters were monitored 1, 60, 120 and 180 days after contamination. The toxic effects of hydrocarbon contamination were greater in the sandy soil. Hydrocarbons inhibited microbial biomass, the greatest negative effect being observed in the gasoline-polluted sandy soil. In both soils crude petroleum and diesel oil contamination increased microbial respiration, while gasoline had little effect on this parameter, especially in the sandy soil. In general, gasoline had the highest inhibitory effect on the hydrolase activities involved in N, P or C cycles in both soils. All contaminants inhibited hydrolase activities in the sandy soil, while in the clayey soil diesel oil stimulated enzyme activity, particularly at the higher concentration. In both soils, a phytotoxic effect on barley and ryegrass seed germination was observed in the contaminated soils, particularly in those contaminated with diesel or petroleum.  相似文献   
290.
Behavioral Ecology and Sociobiology - In many species, outcomes of male duels determine access to females and, ultimately, male reproductive success. Ritualization of behavior in male contests can...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号