首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3018篇
  免费   42篇
  国内免费   25篇
安全科学   163篇
废物处理   154篇
环保管理   612篇
综合类   334篇
基础理论   725篇
环境理论   5篇
污染及防治   756篇
评价与监测   212篇
社会与环境   106篇
灾害及防治   18篇
  2023年   25篇
  2022年   37篇
  2021年   26篇
  2020年   21篇
  2019年   31篇
  2018年   66篇
  2017年   67篇
  2016年   89篇
  2015年   58篇
  2014年   84篇
  2013年   280篇
  2012年   143篇
  2011年   177篇
  2010年   120篇
  2009年   122篇
  2008年   154篇
  2007年   187篇
  2006年   152篇
  2005年   105篇
  2004年   104篇
  2003年   116篇
  2002年   89篇
  2001年   67篇
  2000年   46篇
  1999年   51篇
  1998年   38篇
  1997年   43篇
  1996年   43篇
  1995年   40篇
  1994年   41篇
  1993年   34篇
  1992年   37篇
  1991年   26篇
  1990年   29篇
  1989年   19篇
  1988年   13篇
  1987年   20篇
  1986年   25篇
  1985年   17篇
  1984年   18篇
  1983年   28篇
  1982年   28篇
  1981年   25篇
  1980年   19篇
  1979年   16篇
  1977年   11篇
  1976年   9篇
  1975年   9篇
  1974年   10篇
  1971年   11篇
排序方式: 共有3085条查询结果,搜索用时 0 毫秒
961.
962.
Islands present a unique scenario in conservation biology, offering refuge yet imposing limitations on insular populations. The Kimberley region of northwestern Australia has more than 2500 islands that have recently come into focus as substantial conservation resources. It is therefore of great interest for managers to understand the driving forces of genetic structure of species within these island archipelagos. We used the ubiquitous bar‐shouldered skink (Ctenotus inornatus) as a model species to represent the influence of landscape factors on genetic structure across the Kimberley islands. On 41 islands and 4 mainland locations in a remote area of Australia, we genotyped individuals across 18 nuclear (microsatellite) markers. Measures of genetic differentiation and diversity were used in two complementary analyses. We used circuit theory and Mantel tests to examine the influence of the landscape matrix on population connectivity and linear regression and model selection based on Akaike's information criterion to investigate landscape controls on genetic diversity. Genetic differentiation between islands was best predicted with circuit‐theory models that accounted for the large difference in resistance to dispersal between land and ocean. In contrast, straight‐line distances were unrelated to either resistance distances or genetic differentiation. Instead, connectivity was determined by island‐hopping routes that allow organisms to minimize the distance of difficult ocean passages. Island populations of C. inornatus retained varying degrees of genetic diversity (NA = 1.83 – 7.39), but it was greatest on islands closer to the mainland, in terms of resistance‐distance units. In contrast, genetic diversity was unrelated to island size. Our results highlight the potential for islands to contribute to both theoretical and applied conservation, provide strong evidence of the driving forces of population structure within undisturbed landscapes, and identify the islands most valuable for conservation based on their contributions to gene flow and genetic diversity.  相似文献   
963.
964.
Environmental Science and Pollution Research - Higher demands of food led to higher nitrogen application to promote cropping intensification and produce more which may have negative effects on the...  相似文献   
965.
Climate change requires reconsideration of flood risk management strategies. Cost-benefit analysis (CBA), an economic decision-support tool, has been widely applied to assess these strategies. This paper aims to describe and discuss probabilistic extensions of CBA to identify welfare-maximising flood risk management strategies under climate change. First, uncertainty about the changes in return periods of hydro-meteorological extremes is introduced by probability-weighted climate scenarios. Second, the analysis is extended by learning about climate change impacts. Learning occurs upon the probabilistic arrival of information. We distinguish between learning from scientific progress, from statistical evidence and from flood disasters. These probabilistic extensions can be used to analyse and compare the economic efficiency and flexibility of flood risk management strategies under climate change. We offer a critical discussion of the scope of such extensions and options for increasing flexibility. We find that uncertainty reduction from scientific progress may reduce initial investments, while other types of learning may increase initial investments. This requires analysing effects of different types of learning. We also find that probabilistic information about climate change impacts and learning is imprecise. We conclude that risk-based CBA with learning improves the flexibility of flood risk management strategies under climate change. However, CBA provides subjective estimates of expected outcomes and reflects different decision-maker preferences than those captured in robustness analyses. We therefore advocate robustness analysis in addition to, or combined with, cost-benefit analysis to support local investment decisions on flood risk reduction and global strategies on allocation of adaptation funds for flood risk management.  相似文献   
966.
967.
The occurrence of ectotherm disease vectors outside of their previous distribution area and the emergence of vector-borne diseases can be increasingly observed at a global scale and are accompanied by a growing number of studies which investigate the vast range of determining factors and their causal links. Consequently, a broad span of scientific disciplines is involved in tackling these complex phenomena. First, we evaluate the citation behaviour of relevant scientific literature in order to clarify the question “do scientists consider results of other disciplines to extend their expertise?” We then highlight emerging tools and concepts useful for risk assessment. Correlative models (regression-based, machine-learning and profile techniques), mechanistic models (basic reproduction number R 0) and methods of spatial regression, interaction and interpolation are described. We discuss further steps towards multidisciplinary approaches regarding new tools and emerging concepts to combine existing approaches such as Bayesian geostatistical modelling, mechanistic models which avoid the need for parameter fitting, joined correlative and mechanistic models, multi-criteria decision analysis and geographic profiling. We take the quality of both occurrence data for vector, host and disease cases, and data of the predictor variables into consideration as both determine the accuracy of risk area identification. Finally, we underline the importance of multidisciplinary research approaches. Even if the establishment of communication networks between scientific disciplines and the share of specific methods is time consuming, it promises new insights for the surveillance and control of vector-borne diseases worldwide.  相似文献   
968.
One of the key advantages of meta‐analysis (i.e., a quantitative literature review) over a narrative literature review is that it allows for formal tests of interaction effects—namely, whether the relationship between two variables is contingent upon the value of another (moderator) variable. Interaction effects play a central role in organizational science research because they highlight boundary conditions of a theory: Conditions under which relationships change in strength and/or direction. This article describes procedures for estimating interaction effects using meta‐analysis, distills the technical literature for a general readership of organizational science researchers, and includes specific best‐practice recommendations regarding actions researchers can take before and after data collection to improve the accuracy of substantive conclusions regarding interaction effects investigated meta‐analytically. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
969.
970.
Water is an essential element for humankind, animals, and plants. It is also an important element of the aquatic environment (the natural habitat of multiple species), where its quality plays a determining role in their protection and conservation. Unfortunately, the water quality of natural environments has worsened in the last decades. In sub-Saharan Africa and particularly in Bénin, in contrast to river discharges, monitoring the quality of surface water is a very rare activity. Thus, knowledge about physical and chemical properties as a basis for evaluation of the state of the environment and protection measures needed is almost absent. This article presents the results of the first structured, regular monitoring campaign on surface waters in the whole basin of the Ouémé River in Bénin Republic. With 510 km, the Ouémé River’s water quality fluctuates from upstream (Taneka Koko mountains in the north) to downstream (gauging station Bonou in the south) sources. This is due to soil erosion, lack of water treatment plants, and the use of significant quantities of fertilizer in the cotton zone. The present research was initiated to study the resource degradation of this area through chemical and physical water analysis. The monitoring of water quality has been followed for 5 years on twenty physicochemical parameters, from samples taken at four gauging stations on the main channel of the Ouémé River. Means and standard deviations of water analysis results were compared to both the recommendations of the World Health Organization (WHO) and the Maximum Permissible Concentrations (MPC) for drinking water (WHO 1987). Thus, high values were observed for physical parameters, i.e., color and turbidity had peaks of 697.5 uC and 129 FTU at Bétérou station in the wet season, although certain parameters, such as total hardness, present low values compared to the recommended standards. Moreover, excluding the concentrations of NO2 and NH4 + with values above the MPC, nutrient concentrations posed no direct risk for human consumption. However, together with phosphate concentrations (which are up to ten times higher than permissible ecological thresholds), they can cause eutrophication of the aquatic ecosystem. Due to the current flow regime, which has very low discharge rates in the dry season and torrential rainfall and high sediment loads in the wet season, the risk of eutrophication, i.e., excessive concentrations of ammonium and phosphates, is present throughout the year. Accumulation of ammonium and the distribution of nitrate and nitrites in the river water suggest that nitrification is impeded due to a lack of oxygen in both dry and wet seasons. Finally, the investigations show that the risk of water pollution exists and it is necessary to take measures of sanitation and water treatment to prevent the further degradation of water along the Ouémé River.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号