首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1863篇
  免费   9篇
  国内免费   9篇
安全科学   14篇
废物处理   72篇
环保管理   116篇
综合类   608篇
基础理论   405篇
污染及防治   469篇
评价与监测   114篇
社会与环境   73篇
灾害及防治   10篇
  2018年   26篇
  2017年   18篇
  2016年   23篇
  2014年   28篇
  2013年   91篇
  2012年   28篇
  2011年   51篇
  2010年   49篇
  2009年   61篇
  2008年   79篇
  2007年   68篇
  2006年   51篇
  2005年   52篇
  2004年   45篇
  2003年   42篇
  2002年   56篇
  2001年   69篇
  2000年   61篇
  1999年   38篇
  1998年   22篇
  1997年   31篇
  1996年   34篇
  1995年   36篇
  1994年   31篇
  1993年   29篇
  1992年   21篇
  1991年   38篇
  1990年   50篇
  1989年   25篇
  1988年   29篇
  1987年   21篇
  1986年   16篇
  1985年   24篇
  1984年   25篇
  1983年   19篇
  1982年   31篇
  1979年   19篇
  1978年   19篇
  1977年   19篇
  1976年   18篇
  1974年   18篇
  1972年   21篇
  1968年   16篇
  1967年   24篇
  1966年   20篇
  1964年   15篇
  1962年   14篇
  1958年   14篇
  1957年   15篇
  1955年   14篇
排序方式: 共有1881条查询结果,搜索用时 15 毫秒
511.
The spatial variation of chlorophyll a (Chl a) and factors influencing the high Chl a were studied during austral summer based on the physical and biogeochemical parameters collected near the coastal waters of Antarctica in 2010 and a zonal section along 60°S in 2011. In the coastal waters, high Chl a (>3 mg m?3) was observed near the upper layers (~15 m) between 53°30′E and 54°30′E. A comparatively higher mesozooplankton biomass (53.33 ml 100 m?3) was also observed concordant with the elevated Chl a. Low saline water formed by melting of glacial ice and snow, as well as deep mixed-layer depth (60 m) due to strong wind (>11 ms?1) could be the dominant factors for this biological response. In the open ocean, moderately high surface Chl a was observed (>0.6 mg m?3) between 47°E and 50°E along with a Deep Chlorophyll Maximum of ~1 mg m?3 present at 30–40 m depth. Melt water advected from the Antarctic continent could be the prime reason for this high Chl a. The mesozooplankton biomass (22.76 ml 100 m?3) observed in the open ocean was comparatively lower than that in the coastal waters. Physical factors such as melting, advection of melt water from Antarctic continent, water masses and wind-induced vertical mixing may be the possible reasons that led to the increase in phytoplankton biomass (Chl a).  相似文献   
512.
513.
Studies have been carried out to determine the natural radioactivity in some building materials (bricks, tiles, marble and ceramics) and their associated radiation hazard. The radioactivity concentrations of 226Ra 232Th and 40K were measured using a gamma spectrometer with a Hp–Ge detector. The activities of 238U and 234U were measured using an alpha-spectrometer with a surface barrier detector after applying a radiochemical procedure. The 234U/238U isotopic ratios were calculated. The radium equivalent activities and the radiation hazard index associated with the natural radionuclides were calculated. A computer program was developed and applied to calculate the dose rate a person will receive from the walls of a room constructed from the studied building materials.  相似文献   
514.
Suspended particle adhesion on aquatic biota can significantly increase the apparent concentration of radionuclides above their endogenous value, leading to an overestimation of the uptake rate and concentration ratios. This study is an attempt to assess quantitatively the importance of suspended particle adhesion on periphyton samples (biological material coating submerged surfaces). The concentrations of 137Cs and stable Cs (133Cs) in periphyton, suspended particles and filtered water were measured to determine the net water-to-periphyton concentration ratios for 137Cs and stable Cs. The net amount of 133Cs (or 137Cs) taken up by periphyton was calculated by subtracting from the total amount of 133Cs (or 137Cs) on the collected material (periphyton + inorganic particles), the 133Cs (or 137Cs) due to the inorganic particles adhering to periphyton. The mass of suspended particles adhering to the periphyton surface was calculated using scandium as an indicator of the mineral fraction of the suspended particles. The relationship between the concentration ratios for 137Cs and stable Cs and suspended particle adhesion on periphyton external surfaces is discussed.  相似文献   
515.
The distribution of phytoplankton primary production into four size fractions (>10 m, 10-3 m, 3-0.2 m and <0.2 m), the utilization of algal exudates by bacteria and the bacterial production were studied in a eutrophication gradient in the northern Baltic proper. The polluted area exhibits substantially increased nutrient, especially nitrogen, levels while only minor differences occur in salinity and temperature regimes. Total primary production was 160 g C · m-2 · yr-1 at the control station and about 275 g C · m-2 · yr-1 at the eutrophicated stations. The estimated total exudate release was 16% of the totally fixed 14CO2 in the control area and 12% in the eutrophicated area (including the estimated bacterial uptake of exudates). The difference in14CO2 uptake rates between incubation of previously filtered water (<3, <2, <1 m) and unfiltered water was used to estimate bacterial uptake of phytoplankton exudates which were found to contribute about half of the estimated bacterial carbon requirement in both areas. Bacterial production was estimated by the frequency of dividing cells (FDC) method as being 38 g C · m-2 · yr-1 at the control station and 50 g C · m-2 · yr-1 at the eutrophicated stations. To estimate the mean in situ bacterial cell volume a correlation between FDC and cell volume was used. The increased annual primary production in the eutrophicated area was due mainly to higher production during spring and autumn, largely by phytoplankton cells (mainly diatoms) retained by a 10 m filter. Primary production duringsummer was similarin the two areas, as was the distribution on different size fractions. This could possibly explain the similar bacterial production in the trophic layers at all stations since the bulk of bacterial production occurs during summer. It was demonstrated that selective filtration does not quantitatively separate photoautotrophs and bacteria. A substantial fraction of the primary production occurs in the size fraction <3 m. The primary production encountered in the 3-0.2 m fraction was due to abundant picoplankton (0.5 to 8 · 107 ind · l-1), easily passing a 3 m filter. The picoplankton was estimated to constitute up to 25% of the total phytoplankton biomass in the control area and up to 10% in the eutrophicated area.  相似文献   
516.
Some coelenterates of the class Hydrozoa and some anthozoan coelenterates from the subclass Octocorallia secrete skeletons of calcium carbonate. Skeletal carbonates of three hydrozoans and of two octocorals were analyzed for the stable isotopes of carbon and oxygen. The results suggest that each of these coelenterates deposits CaCO3 in oxygen isotopic equilibrium with seawater, and that at least one octocoral, Heliopora, has skeletal carbon in apparent isotopic equilibrium with atmospheric CO2. Two of these coelenterates, Millepora and Helipora, are significant contributors to the construction of coral reefs. Whereas 18O of these corals is temperature dependent, 13C is not obviously related to temperature. The 18O-temperature relationship is not significantly different from the oxygen isotope paleotemperature scale developed by Epstein et al. (1953). These findings contrast with numerous analyses of the carbonate in scleractinian coelenterates, which have long been reported to deposit CaCO3 skeletons whose carbon and oxygen isotopic compositions are not in equilibrium with the external sea-water environment.  相似文献   
517.
The scope of anaerobic metabolism of Sipunculus nudus L. was assessed from the maximal activities of some enzymes of the intermediary metabolism and from the concentration of some metabolites accumulated during enhanced muscular activity and during prolonged experimental hypoxia.
  1. Maximal enzyme activities demonstrate that the scope of anaerobic glycolysis, as indicated by maximal activities of glycogen phosphorylase (0.84 U g-1 fresh wt), far exceeds the aerobic capacity, which is assumed not to surpass the activity of succinate dehydrogenase (0.09 U g-1 fresh wt). Three pyruvate reductase activities (alanopine-, strombine- and octopine dehydrogenase) can possibly terminate anaerobic glycolysis.
  2. During muscular activity, energy is provided by the degradation of phospho-L-arginine and by anaerobic glycolysis. Octopine is the major endproduct during functional anaerobiosis while the formation of strombine is less pronounced.
  3. During exposure to a nitrogen atmosphere, several anaerobic endproducts are found to accumulate. Anaerobic glycolysis is terminated by strombine synthesis. This opine accumulates in concentrations much higher than octopine. In addition the concentrations of succinate, propionate and acetate are found to increase in tissues, and/or in the coelomic fluid and the incubation water.
  4. The relative contribution of energy by the different anaerobic metabolic pathways are estimated during functional and environmental hypoxia.
  相似文献   
518.
Phytoplankton production, standing crop, and loss processes (respiration, sedimentation, grazing by zooplankton, and excretion) were measured on a daily basis during the growth, dormancy and decline of a winter-spring diatom bloom in a large-scale (13 m3) marine mesocosm in 1987. Carbonspecific rates of production and biomass change were highly correlated whereas production and loss rates were unrelated over the experimental period when the significant changes in algal biomass characteristic of phytoplankton blooms were occurring. The observed decline in diatom growth rates was caused by nutrient limitation. Daily phytoplankton production rates calculated from the phytoplankton continuity equation were in excellent agreement with rates independently determined using standard 14C techniques. A carbon budget for the winter bloom indicated that 82.4% of the net daytime primary production was accounted for by measured loss processes, 1.3% was present as standing crop at the end of the experiment, and 16.3% was unexplained. Losses via sedimentation (44.8%) and nighttime phytoplankton respiration (24.1%) predominated, while losses due to zooplankton grazing (10.7%) and nighttime phytoplankton excretion (2.8%) were of lesser importance. A model simulating daily phytoplankton biomass was developed to demonstrate the relative importance of the individual loss processes.  相似文献   
519.
The in situ grazing rate and nutritional condition of copepods were studied during October/November 1985, by analyzing gut fluorescence (feeding), body size and lipid composition (nutritional state), and electron transport system (ETS) activity (respiration rate) of copepods from surface-and deep-water in Kosterfjorden on the Swedish west coast. These parameters were related to the physical and biological environment, as defined by light, hydrography, autotrophic and bacterial production and seston in the water column. The results show a gradual build-up of the autumn phytoplankton bloom in the uppermost meters, with a peak in total autotrophic production in mid October of ca 550 mg C m–2 d–1, and a bacterial net production corresponding to 15% of this. Phytoplankton exudates made up, on average, 47% of the primary production and more than 50% of this was utilized by the bacteria. Copepods occurring in the surface-water exhibited grazing rates corresponding to between 11 and 18% of their body C d–1 and potential growth rates of 0 to 9% d–1. Copepod populations in the surface water were composed of individuals with higher average body-weight and lower lipid-proportion than those from the deep-water.Calanus finmarchicus in the deep-water showed characters indicating diapause condition, while this was not observed forAcartia clausi. Differences in lipid content and composition indicate thatC. finmarchicus, Pseudocalanus sp. andA. clausi represent three successive points on a scale of tolerance for fluctuations in the food environment. Adult femaleMetridia longa was the only one among seven species/stages of copepods in the deep-water ( 50 m depth) that contained phytoplankton pigments.Study performed through Tjärnö Marine Biological Laboratory, University of Göteborg, S-452 00 Strömstad, Sweden  相似文献   
520.
Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa)   总被引:1,自引:0,他引:1  
We studied growth of newly released Aurelia aurita ephyra larvae fed five different food types, including a large-sized copepod, a phytoflagellate, and suspended POM (particulate organic matter) made from bivalve meat. Experiments were run at saturated food concentration in two different temperatures over 10 days. The effect of small differences in temperature was inconsistent and interacted with the effect of food type, which, in turn, was highly significant. A low average growth rate (4-9% day-1) was shown when feeding on the large-sized copepod Calanus finmarchicus (80 µg AFDW individual-1), in spite of an extremely high daily ration of up to 1500% of body AFDW. When feeding on the cryptophyte Rhodomonas baltica (ca. 8 µm cell diameter), the ephyrae showed an average growth rate over the 10 day experiment of 7-11%, but with a considerably higher growth rate during the first days. Suspended POM generated an average growth rate of 7-9% day-1, whereas fresh bivalve meat, manually placed into the stomach of the ephyra, gave an average growth rate of 12-14% day-1. Artemia nauplii (ca. 3 µg AFDW individual-1), used as a general reference, resulted in higher growth rates than any of the other food types (17-31% day-1). We conclude that A. aurita ephyrae can capture and feed on phytoplankton, large copepods, and POM; that phytoplankton might be of nutritive significance early in development; and that the high quantity of large-sized copepods ingested is inefficiently converted to growth during early development. POM is a potential food source because of the ability of the ephyrae to encounter and ingest it, although concentration, size distribution, and nutritional composition of natural POM probably constrain its effect on growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号