首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1962篇
  免费   8篇
  国内免费   90篇
安全科学   39篇
废物处理   69篇
环保管理   202篇
综合类   337篇
基础理论   89篇
污染及防治   996篇
评价与监测   235篇
社会与环境   76篇
灾害及防治   17篇
  2023年   2篇
  2022年   3篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   7篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   195篇
  2011年   254篇
  2010年   23篇
  2009年   50篇
  2008年   183篇
  2007年   204篇
  2006年   150篇
  2005年   133篇
  2004年   123篇
  2003年   147篇
  2002年   109篇
  2001年   73篇
  2000年   70篇
  1999年   28篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   11篇
  1994年   14篇
  1993年   16篇
  1992年   18篇
  1991年   10篇
  1990年   20篇
  1989年   14篇
  1988年   14篇
  1987年   23篇
  1986年   15篇
  1985年   17篇
  1984年   13篇
  1983年   21篇
  1982年   8篇
  1981年   20篇
  1980年   12篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   6篇
  1974年   8篇
  1973年   1篇
排序方式: 共有2060条查询结果,搜索用时 578 毫秒
161.
Tile drained land with phosphorus (P)-rich topsoil is prone to P loss, which can impair surface water quality via eutrophication. We used by-products from steel and energy industries to mitigate P loss from tile drains. For each by-product, P sorption maximum (P(max)) and strength (k) were determined, while a fluvarium trial assessed P uptake with flow rate. Although two ash materials (fly ash and bottom ash) had high P(max) and k values, heavy metal concentrations negated their use in the field. The fluvarium experiment determined that P uptake with by-products was best at low flow, but decreased at higher flow in proportion to k. A mixture of melter slag (<10 mm) and basic slag (high P(max), 7250 mg kg(-1); and k, 0.508 L mg P(-1)) was installed as backfill in eight drains on a dairy farm. Four drains with greywacke as backfill were constructed for controls. The site (10 ha) had P-rich topsoil (Olsen P of 64 mg kg(-1)) and yielded a mean dissolved reactive P (DRP) and total P (TP) concentration from greywacke backfilled drains of 0.33 and 1.20 mg L(-1), respectively. In contrast, slag backfilled drains had DRP and TP concentrations of 0.09 and 0.36 mg L(-1), respectively. Loads of DRP and TP in greywacke drains (0.45 and 1.92, respectively) were significantly greater (P < 0.05) than those from slag drains (0.18 and 0.85, respectively). Data from a farm where melter slag was used as a backfill suggested that slag would have a life expectancy of about 25 yr. Thus, backfilling tile drains with melter slag and a small proportion of basic slag is recommended as an effective means of decreasing P loss from high P soils.  相似文献   
162.
Bae E  Lee JW  Hwang BH  Yeo J  Yoon J  Cha HJ  Choi W 《Chemosphere》2008,72(2):174-181
The photocatalytic inactivation (PCI) of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) was performed using polyoxometalate (POM) as a homogeneous photocatalyst and compared with that of heterogeneous TiO2 photocatalyst. Aqueous suspensions of the microorganisms (107–108 cfu ml−1) and POM (or TiO2) were irradiated with black light lamps. The POM-PCI was faster than (or comparable to) TiO2-PCI under the experimental conditions employed in this study. The relative efficiency of POM-PCI was species-dependent. Among three POMs (H3PW12O40, H3PMo12O40, and H4SiW12O40) tested in this study, the inactivation of E. coli was fastest with H4SiW12O40 while that of B. subtilis was the most efficient with H3PW12O40. Although the biocidal action of TiO2 photocatalyst has been commonly ascribed to the role of photogenerated reactive oxygen species such as hydroxyl radicals and superoxides, the cell death mechanism with POM seems to be different from TiO2-PCI. While TiO2 caused the cell membrane disruption, POM did not induce the cell lysis. When methanol was added to the POM solution, not only the PCI of E. coli was enhanced (contrary to the case of TiO2-PCI) but also the dark inactivation was observed. This was ascribed to the in situ production of formaldehyde from the oxidation of methanol. The interesting biocidal property of POM photocatalyst might be utilized as a potential disinfectant technology.  相似文献   
163.
A new analytical method using accelerated solvent extraction was developed for the determination of 10 particle-associated polar and semipolar pesticides. In addition, six deuterated analogues of the target compounds were evaluated as internal standards. The method yielded acceptable accuracy (73–103% recovery) and precision (<25% relative standard deviation) for eight compounds. Using size exclusion chromatography (SEC) as cleanup step resulted in higher recoveries compared to solid phase extraction (SPE) cleanup.

Deuterated standards with 10 or more deuterium atoms performed well as internal standards concerning similar recovery and correlation with the target analytes.

The method was employed to extract particle-associated pesticides from 16 streams located in an area with intense agriculture in France. Acetochlor, pirimicarb, tebuconazole, fenpropidin, -endosulfan and chlorfenvinphos were detected at concentrations up to 1 mg kg−1 dry weight. A comparison with aquatic toxicity data indicated potential risk to the benthic fauna exposed to these concentrations of pirimicarb, -endosulfan and chlorfenvinphos.

We suggest that the method presented here be used for the extraction and quantitation of particle-associated polar pesticides.  相似文献   

164.
Anaerobic degradation behavior of nonylphenol polyethoxylates in sludge   总被引:1,自引:0,他引:1  
Lu J  Jin Q  He Y  Wu J  Zhang W  Zhao J 《Chemosphere》2008,71(2):345-351
Anaerobic biodegradation behavior of nonylphenol polyethoxylates (NPEOs) was investigated. Results showed that terminal electron acceptors, organic matters, initial concentration, and temperature had great influence on the anaerobic biodegradation of NPEOs. Anaerobic biodegradation of NPEOs could be enhanced by adding sulfate or nitrate while this process could be inhibited by adding organic matters. The maximum removal rate increased 1.24 microM d(-1) for each ten micromoles increase in initial concentration. The decrease in temperature caused a sharp decrease in the removal efficiency of NPEOs. The temperature coefficient (PHI) for the anaerobic biodegradation of NPEOs was 0.01 degrees C(-1). Nonylphenol (NP), the typical intermediate of NPEOs, could inhibit the anaerobic biodegradation of NPEOs only at high concentration. However, these environmental factors had no effect on the anaerobic biodegradation pathway of NPEOs. The accumulation of NP and short-chain NPEOs during NPEO biodegradation led to a significant increase in the estrogenic activity during the biodegradation period.  相似文献   
165.
Ozonation of oil sands process water removes naphthenic acids and toxicity   总被引:1,自引:0,他引:1  
Naphthenic acids are naturally-occurring, aliphatic or alicyclic carboxylic acids found in petroleum. Water used to extract bitumen from the Athabasca oil sands becomes toxic to various organisms due to the presence of naphthenic acids released from the bitumen. Natural biodegradation was expected to be the most cost-effective method for reducing the toxicity of the oil sands process water (OSPW). However, naphthenic acids are poorly biodegraded in the holding ponds located on properties leased by the oil sands companies. In the present study, chemical oxidation using ozone was investigated as an option for mitigation of this toxicity. Ozonation of sediment-free OSPW was conducted using proprietary technology manufactured by Seair Diffusion Systems Inc. Ozonation for 50min generated a non-toxic effluent (based on the Microtox bioassay) and decreased the naphthenic acids concentration by approximately 70%. After 130min of ozonation, the residual naphthenic acids concentration was 2mgl(-1): <5% of the initial concentration in the filtered OSPW. Total organic carbon did not change with 130min of ozonation, whereas chemical oxygen demand decreased by approximately 50% and 5-d biochemical oxygen demand increased from an initial value of 2mgl(-1) to a final value of 15mgl(-1). GC-MS analysis showed that ozonation resulted in an overall decrease in the proportion of high molecular weight naphthenic acids (n> or = 22).  相似文献   
166.
A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.  相似文献   
167.
Li P  Dong W  Zhang R  Huang L  Ye Z  Hou H 《Chemosphere》2008,71(8):1494-1501
The microscopic reaction mechanisms of diphenylether (DPE) and 4-bromodiphenylether (4-BrDPE) with nitrous acid (HNO(2)) in the absence of O(2) have been explored by the 355nm laser flash photolysis. It was proposed that OH radical, from the photolysis of HNO(2), added to DPE forms the C(12)H(10)O-OH adduct while added to 4-BrDPE forms the 4-BrDPE-OH and 4-BrOH-DPE adducts. The first-order decay rate constants of the C(12)H(10)O-OH adduct, 4-BrDPE-OH adduct and 4-BrOH-DPE adduct were measured to be (1.86+/-0.14)x10(5)s(-1), (2.19+/-0.04)x10(5)s(-1) and (1.56+/-0.03)x10(5)s(-1), respectively. The final photolysis products of DPE and HNO(2) identified by GC/MS analysis were phenol, o-hydroxydiphenylether, p-hydroxydiphenylether and p-nitrodiphenylether, while the final photolysis product of 4-BrDPE and HNO(2) identified by LC/MS analysis was mainly the dimer.  相似文献   
168.
Byun Y  Ko KB  Cho M  Namkung W  Shin DN  Lee JW  Koh DJ  Kim KT 《Chemosphere》2008,72(4):652-658
The oxidation of gas phase elemental mercury (Hg0) by atmospheric pressure non-thermal plasma has been investigated at room temperature, employing both dielectric barrier discharge (DBD) of the gas mixture of Hg0 and injection of ozone (O3) into the gas mixture of Hg0. Results have shown that the oxidative efficiencies of Hg0 by DBD and the injection of O3 are 59% and 93%, respectively, with energy consumption of 23.7 J L(-1). This combined approach has indicated that O3 plays a decisive role in the oxidation of gas phase Hg0. Also the oxidation of Hg0 by injecting O3 into the gas mixture of Hg0 proceeds with better efficiency than DBD of the gas mixture of Hg0. These results have been explained by the incorporation of the competitive reaction pathways between the formation of HgO by O3 and the decomposition of HgO back to Hg0 in the plasma environment.  相似文献   
169.
Fluorinated surfactants have become essential in numerous technical applications due to their unparalleled effectiveness and efficiency. The environmental persistence of the non-biodegradable perfluorinated alkyl moiety has become a matter of concern. Therefore, it was searched for new molecules with chemically stable fluorinated end groups which can be microbially transformed into labile fluorinated substances. One prototype substance, 10-(trifluoromethoxy)decane-1-sulfonate, has shown biomineralization. Monitoring the formation of metabolites over time elucidated the mechanism of biotransformation. Analysis was performed utilizing liquid chromatography-single quadrupole mass spectrometry (LC-MS) and quadrupole-time of flight tandem mass spectrometry (QqTOF-MS). It was possible to distinguish between two major degradation pathways of the fluorinated alkylsulfonate derivative: (i) a desulfonation and subsequent oxidation and degradation of the alkyl chain being predominant and (ii) an insertion of oxygen with a subsequent cleavage and degradation of the molecule. The utilized trifluoromethoxy-endgroup resulted in instable trifluoromethanol after degradation of the alkyl chain, which led to a high degree of mineralization of the molecule.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号