全文获取类型
收费全文 | 24816篇 |
免费 | 7934篇 |
国内免费 | 8946篇 |
专业分类
安全科学 | 5152篇 |
废物处理 | 468篇 |
环保管理 | 2247篇 |
综合类 | 22338篇 |
基础理论 | 4534篇 |
污染及防治 | 2148篇 |
评价与监测 | 1718篇 |
社会与环境 | 1829篇 |
灾害及防治 | 1262篇 |
出版年
2024年 | 972篇 |
2023年 | 1335篇 |
2022年 | 2136篇 |
2021年 | 2109篇 |
2020年 | 2456篇 |
2019年 | 1787篇 |
2018年 | 1741篇 |
2017年 | 2070篇 |
2016年 | 1705篇 |
2015年 | 1765篇 |
2014年 | 1593篇 |
2013年 | 1905篇 |
2012年 | 2396篇 |
2011年 | 2266篇 |
2010年 | 2203篇 |
2009年 | 2192篇 |
2008年 | 2012篇 |
2007年 | 1998篇 |
2006年 | 1962篇 |
2005年 | 1479篇 |
2004年 | 1050篇 |
2003年 | 631篇 |
2002年 | 605篇 |
2001年 | 517篇 |
2000年 | 439篇 |
1999年 | 214篇 |
1998年 | 47篇 |
1997年 | 20篇 |
1996年 | 28篇 |
1995年 | 16篇 |
1994年 | 15篇 |
1993年 | 4篇 |
1992年 | 28篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
231.
通过序批试验研究了零价铁修复对底泥中1,3-二氯苯的去除效果,分析了零价铁修复过程中pH和铁离子质量浓度以及修复后底泥土壤酶的恢复情况. 结果表明:添加占底泥干质量2%的还原铁粉,1,3-二氯苯的去除率可达72.3%〔初始w(1,3-二氯苯)为500 mg/kg,培养时间为20 d〕,较未添加零价铁修复处理高52.0%. 零价铁有效地促进了底泥中1,3-二氯苯的去除,土著微生物在自然恢复中起一定的作用. 在修复过程中零价铁并未使底泥pH发生明显变化,底泥水体中的总铁质量浓度(低于0.3 mg/L)始终符合地表水环境质量标准(GB3838—2002). 1,3-二氯苯污染使底泥过氧化氢酶、转化酶和蛋白酶的酶活性显著降低,使脲酶的酶活性显著升高. 零价铁修复使1,3-二氯苯抑制的底泥过氧化氢酶的酶活性恢复到未污染对照水平. 相似文献
232.
东亚春季边界层臭氧的数值模拟研究 总被引:5,自引:2,他引:3
利用嵌套网格空气质量模式系统(NAQPMS)对2004年4月东亚边界层(距地面.km以下)臭氧进行了数值模拟.并评估了东亚边界层光化学反应的活性.结果表明.东亚春季臭氧呈带状分布,其高值.〔φ(O3)>55×10-9.主要集中在30°N~40°N.受东亚季风气候控制.沿蒙古、中国东北以及日本一线有一强臭氧输送通道.输送通量达3×10-.mol/(m2·s).通过计算边界层O3光化学净生成率可知.光化学影响主要集中在高污染源排放地区.其与水平输送对臭氧影响的分布具有负相关性.说明光化学生成的O3可被输送至下风地区,而不仅限于局地. 相似文献
233.
硫酸盐还原条件下多环芳烃在土壤中的迁移转化 总被引:1,自引:0,他引:1
为研究硫酸盐还原条件下多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)类有机污染物在土壤中的污染分布规律和迁移转化过程,设计了室内土柱淋溶试验,选择菲、蒽和芘作为PAHs的代表,模拟硫酸盐还原条件下PAHs在土壤中的迁移转化过程.监测土壤中PAHs的垂直分布、淋出液中ρ(PAHs)和ρ(SO42-)、淋出液的氧化还原电位(Eh)和总体积,并通过质量平衡计算出PAHs的降解率.结果表明:①菲和蒽的相对淋出率总体都不超过2%.120 d后菲和蒽在土壤中的残留率分别为51.87%和51.21%,而芘有90%以上吸附在土壤中,在淋出液中未检出.②随着淋溶时间的延长,土壤中的氧气逐渐被消耗,淋出液中ρ(SO42-)和Eh逐渐降低,并趋于稳定,硫酸盐还原作用发生.③3种PAHs在硫酸盐还原条件下都存在一定程度的降解.菲和蒽的降解率相差不大且随淋溶时间的延长逐渐增大,120 d后菲和蒽的降解率分别为47.41%和48.10%,而4环的芘降解速率非常低,120 d后降解率仅为3.61%. 相似文献
234.
235.
纳米ZnO对嗜热四膜虫的生态毒性研究 总被引:3,自引:1,他引:2
为评价纳米ZnO的生态安全性,研究了其对嗜热四膜虫(Tetrahymena thermophila)的水生生态毒性. 显微成像表明,嗜热四膜虫食物泡是摄取纳米ZnO的主要部位. 低ρ(纳米ZnO)对嗜热四膜虫的增殖具有促进作用(即“兴奋反应),其中100 mg/L时促进作用最明显,随着ρ(纳米ZnO)的进一步增加,其对嗜热四膜虫增殖的促进作用逐渐减弱. 随着时间的延长,“兴奋反应逐渐减弱. 纳米ZnO能降低嗜热四膜虫的超氧化物歧化酶活性,且ρ(纳米ZnO)越高,抑制效应越强. 纳米ZnO使嗜热四膜虫自由基清除能力下降,可能是其产生毒害作用的主要原因之一. 相似文献
236.
新农药HW-02在土壤中的吸附 总被引:3,自引:1,他引:2
采用振荡平衡法研究了新型除草剂HW-02在5种不同土壤中的吸附特性. 结果表明:土壤对HW-02的吸附性强;HW-02在黑钙土、白浆土、草甸土、砂性土和黏壤土等5种土壤中的吸附可用Freundlich等温式较好地描述,其吸附系数(KF)分别为332.65,103.32,672.97,577.96和289.60,吸附自由能变绝对值(ΔG)分别为16.55,22.73,18.32,18.48和22.86 kJ/mol,说明HW-02在土壤中的吸附以物理吸附为主;HW-02在5种土壤中的有机质吸附常数(KOM)为796.57~10 197.18,说明其在土壤中迁移性很弱. HW-02在土壤中的吸附系数与土壤w(有机质),pH和w(黏粒)相关性较好,而与阳离子交换量(CEC)的相关性差,说明土壤w(有机质),w(黏粒)和pH是影响HW-02在土壤中吸附的主要因素. 相似文献
237.
鞍山大气颗粒物浓度的变化特征 总被引:2,自引:1,他引:1
利用鞍山大气成分监测站Grimm180观测的2007年颗粒物数浓度,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)以及台站的常规气象观测资料,分析了该地区颗粒物数浓度的谱分布、质量浓度的变化特征及与气象条件的相关性. 结果表明:颗粒物数浓度谱分布符合Junge分布;参数υ与能见度呈负相关,υ值越大且PM0.45占PM10的数浓度比例小于90%,能见度较差;颗粒物质量浓度日变化呈双峰特征,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)平均值为0.654,ρ(PM1.0)/ρ(PM2.5)的平均值为0.832,ρ(PM1.0)/ρ(PM10)平均值为0.545;鞍山地区年主导风向为SE,颗粒物质量浓度变化受辽宁沙尘移动路径的影响较小,主要受排放累积型污染影响,其中大雾天气条件下颗粒物质量浓度较高,大雾期间的回归方程截距较年平均回归方程的大,这对研究颗粒物质量浓度的突变特性具有指示作用. 相似文献
238.
基于稳健统计的土壤环境背景值研究及应用 总被引:3,自引:0,他引:3
使用稳健统计方法中的位置估计量和尺度估计量对我国某受到人为干扰的地下水水源地C层土壤重金属的背景值进行了研究.结果表明,稳健统计方法对样本中的异常值有较高的耐抗性,计算结果与常规方法相近,因而适用于某些人为干扰地区的土壤环境背景值研究.对该水源地背景值的计算表明,该地区C层土壤Cu,Pb,Cd,Cr,As和Hg的背景值中心分别为21.2,32.5,0.103,60.3,11.0和0.012 mg/kg,其中w(Pb),w(Cd)和w(As)高于山东省平均值. 6种重金属的阈值分别为29.0,43.7,0.143,93.5,21.0和0.080 mg/kg,均小于全国平均上限值,但其中Pb,Cr,As的阈值高于土壤环境质量一级标准. 基于该地区背景值的污染累积指数评价表明,该地区主要重金属污染物为Pb和Hg,主要污染区为污水沟渠周边,污染深度为1~3 m. 相似文献
239.
贵阳市城区路侧土壤重金属分布特征及污染评价 总被引:9,自引:4,他引:5
研究了贵阳市城区各交通干线两侧表层土壤中重金属的质量分数、空间分布特征及其影响因素.以基线作为参比值,采用地积累指数法对其污染程度进行评价.结果表明:各交通干道两侧土壤中重金属质量分数存在显著差异,除Pb和Cr外,其余重金属质量分数均高于中国表层土壤重金属元素背景值和贵阳市表层土壤重金属元素基线值. 整体上,贵阳市路侧土壤尚未受到Pb和Cr的污染,其w(Hg),w(Cd)和w(Zn)已达中度污染甚至强污染水平,同时各路段也受到了不同程度的As,Cu和Ni污染,但并不严重. 据调查,路侧土壤中重金属质量分数及其分布格局主要受到燃煤、交通运输、地形及路况、气象因素以及城市建设等的影响. 相似文献
240.
工业废水排放量和治理投资费用的预测 总被引:3,自引:1,他引:2
利用1996—2005年相关统计数据以及专项调查数据,对重点排放行业工业废水的产生、排放特征以及治理费用函数进行分析,建立了分行业的宏观工业废水排放和治理费用预测模型,并预测了2006—2020年工业废水排放趋势、投资需求以及减排重点. 结果表明:到2010年,工业废水和CODCr产生量分别为646×108~658×108和1 575×104~2 031×104 t,二者的排放量将分别介于234×108~301×108和441.1×104~609.2×104 t;“十一五期间工业废水治理投资和治理费用如不能达到8 000×108元,将面临CODCr减排目标不能完成的风险. 相似文献