首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   3篇
  国内免费   5篇
安全科学   3篇
废物处理   9篇
环保管理   27篇
综合类   315篇
基础理论   90篇
污染及防治   98篇
评价与监测   23篇
社会与环境   12篇
灾害及防治   1篇
  2018年   7篇
  2017年   9篇
  2016年   13篇
  2015年   8篇
  2013年   18篇
  2012年   8篇
  2011年   22篇
  2010年   13篇
  2009年   16篇
  2008年   20篇
  2007年   21篇
  2006年   7篇
  2005年   14篇
  2004年   14篇
  2003年   15篇
  2002年   12篇
  2001年   7篇
  1999年   12篇
  1998年   15篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1990年   5篇
  1975年   5篇
  1973年   6篇
  1972年   5篇
  1970年   8篇
  1969年   5篇
  1967年   8篇
  1965年   11篇
  1963年   13篇
  1962年   10篇
  1961年   10篇
  1960年   10篇
  1959年   13篇
  1958年   9篇
  1957年   7篇
  1956年   9篇
  1955年   7篇
  1954年   5篇
  1953年   6篇
  1952年   5篇
  1951年   4篇
  1938年   4篇
  1930年   4篇
  1926年   7篇
  1914年   6篇
  1913年   11篇
排序方式: 共有578条查询结果,搜索用时 77 毫秒
321.
An increased use of wood products and an adequate management of forests can help to mitigate climate change. However, planning horizons and response time to changes in forest management are usually long and the respective GHG effects related to the use of wood depend on the availability of harvested wood. Therefore, an integral long-term strategic approach is required to formulate the most effective forest and wood management strategies for mitigating climate change.The greenhouse gas (GHG) dynamics related to the production, use and disposal of wood products are manifold and show a complex time pattern. On the one hand, wood products can be considered as a carbon pool, as is the forest itself. On the other hand, an increased use of wood can lead to the substitution of usually more energy-intense materials and to the substitution of fossil fuels when the thermal energy of wood is recovered. Country-specific import/export flows of wood products and their alternative products as well as their processing stage have to be considered if substitution effects are assessed on a national basis.We present an integral model-based approach to evaluate the GHG impacts of various forest management and wood use scenarios. Our approach allows us to analyse the complex temporal and spatial patterns of GHG emissions and removals including trade-offs of different forest management and wood use strategies. This study shows that the contributions of the forestry and timber sector to mitigate climate change can be optimized with the following key recommendations: (1) the maximum possible, sustainable increment should be generated in the forest, taking into account biodiversity conservation as well as the long-term preservation of soil quality and growth performance; (2) this increment should be harvested continuously; (3) the harvested wood should be processed in accordance with the principle of cascade use, i.e. first be used as a material as long as possible, preferably in structural components; (4) waste wood that is not suitable for further use should be used to generate energy. Political strategies to solely increase the use of wood as a biofuel cannot be considered efficient from a climate perspective; (5) forest management strategies to enhance carbon sinks in forests via reduced harvesting are not only ineffective because of a compensatory increase in fossil fuel consumption for the production of non-wooden products and thermal energy but also because of the Kyoto-“cap” that limits the accountability of GHG removals by sinks under Article 3.3 and 3.4, at least for the first commitment period; (6) the effect of substitution through the material and energy use of wood is more significant and sustained as compared with the stock effects in wood products, which tend towards new steady-state flow equilibria with no further increase of C stocks; (7) from a global perspective, the effect of material substitution exceeds that of energy recovery from wood. In the Swiss context, however, the energy recovery from wood generates a greater substitution effect than material substitution.  相似文献   
322.
Surface water methane(CH4) and nitrous oxide(N2O) concentrations and fluxes were investigated in two subtropical coastal embayments(Bramble Bay and Deception Bay,which are part of the greater Moreton Bay, Australia). Measurements were done at 23 stations in seven campaigns covering different seasons during 2010–2012. Water–air fluxes were estimated using the Thin Boundary Layer approach with a combination of wind and currents-based models for the estimation of the gas transfer velocities. The two bays were strong sources of both CH4 and N2O with no significant differences in the degree of saturation of both gases between them during all measurement campaigns. Both CH4 and N2O concentrations had strong temporal but minimal spatial variability in both bays.During the seven seasons, CH4 varied between 500% and 4000% saturation while N2O varied between 128 and 255% in the two bays. Average seasonal CH4 fluxes for the two bays varied between 0.5 ± 0.2 and 6.0 ± 1.5 mg CH24/(m·day) while N2 O varied between 0.4 ± 0.1 and1.6 ± 0.6 mg N2O/(m2·day). Weighted emissions(t CO2-e) were 63%–90% N2 O dominated implying that a reduction in N2 O inputs and/or nitrogen availability in the bays may significantly reduce the bays' greenhouse gas(GHG) budget. Emissions data for tropical and subtropical systems is still scarce. This work found subtropical bays to be significant aquatic sources of both CH4 and N2O and puts the estimated fluxes into the global context with measurements done from other climatic regions.  相似文献   
323.
In Sweden there is a strong tradition of using nature areas for outdoor recreation. This paper reports on a study which explored preferences and willingness to pay for outdoor recreation close to home (≤100 km away from home and ≤24 hours stay at a recreation site) using the contingent valuation method. The data originated from a mail survey that involved Swedish residents who were randomly selected from a national register. An ordinary least squares regression model was used to account for factors influencing willingness to pay. The results showed that approximately 50% of the respondents used nature areas close to their home for recreation and their average frequency of visits to these areas was 74 times annually. Areas dominated by forests were the most preferred, followed by water. The respondents were willing to pay approximately 7200 SEK (US$1080) annually. Their willingness to pay was influenced by factors such as type of nature area, distance to and time spent at the recreation site and income. The results provide one input to the land use planning process by considering the demand for nature-based outdoor recreation close to home.  相似文献   
324.
325.
326.

Background

This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances.

Methods

The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines.

Results

The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation of these challenges is described.

Conclusions

The use of the conceptual framework, and addressing the challenges, is intended to support: (1) forwarding sustainable use of chemicals, (2) identification of pollutants of priority concern for cost-effective management, (3) the selection of optimal abatement options and (4) the development and use of optimised legal and policy instruments.
  相似文献   
327.
In Central Europe, management of forests for multiple ecosystem services (ES) has a long tradition and is currently drawing much attention due to increasing interest in non-timber services. In face of a changing climate and diverse ES portfolios, a key issue for forest managers is to assess vulnerability of ES provisioning. In a case study catchment of 250 ha in the Eastern Alps, the currently practiced uneven-aged management regime (BAU; business as usual) which is based on irregularly shaped patch cuts along skyline corridors was analysed under historic climate (represented by the period 1961–1990) and five transient climate change scenarios (period 2010–2110) and compared to an unmanaged scenario (NOM). The study addressed (1) the future provisioning of timber, carbon sequestration, protection against gravitational hazards, and nature conservation values under BAU management, (2) the effect of spatial scale (1, 5, 10 ha grain size) in mapping ES indicators and (3) how the spatial scale of ES assessment affects the simultaneous provision of several ES (i.e. multifunctionality). The analysis employed the PICUS forest simulation model in combination with novel landscape assessment tools. In BAU management, timber harvests were smaller than periodic increments. The resulting increase in standing stock benefitted carbon sequestration. In four out of five climate change scenarios, volume increment was increasing. With the exception of the mildest climate change scenario (+2.6 °C, no change in precipitation), all other analysed climate change scenarios reduced standing tree volume, carbon pools and number of large old trees, and increased standing deadwood volume due to an intensifying bark beetle disturbance regime. However, increases in deadwood and patchy canopy openings benefitted bird habitat quality. Under historic climate, the NOM regime showed better performance in all non-timber ES. Under climate change conditions, the damages from bark beetle disturbances increased more in NOM compared with BAU. Despite favourable temperature conditions in climate change scenarios, the share of admixed broadleaved species was not increasing in BAU management, mainly due to the heavy browsing pressure by ungulates. In NOM, it even decreased and mean tree age increased. Thus, in the long run NOM may enter a phase of lower resilience compared with BAU. Most ES indicators were fairly insensitive to the spatial scale of indicator mapping. ES indicators that were based on sparse tree and stand attributes such as rare admixed tree species, large snags and live trees achieved better results when mapped at larger scales. The share of landscape area with simultaneous provisioning of ES at reasonable performance levels (i.e. multifunctionality) decreased with increasing number of considered ES, while it increased with increasing spatial scale of the assessment. In the case study, landscape between 53 and 100 % was classified as multifunctional, depending on number and combinations of ES.  相似文献   
328.
Studies have shown that ecological restoration projects are more likely to gain public support if they simultaneously increase important human services that natural resources provide to people. River restoration projects have the potential to influence many of the societal functions (e.g., flood control, water quality) that rivers provide, yet most projects fail to consider this in a comprehensive manner. Most river restoration projects also fail to take into account opportunities for revitalization of large-scale river processes, focusing instead on opportunities presented at individual parcels. In an effort to avoid these pitfalls while planning restoration of the Sacramento River, we conducted a set of coordinated studies to evaluate societal impacts of alternative restoration actions over a large geographic area. Our studies were designed to identify restoration actions that offer benefits to both society and the ecosystem and to meet the information needs of agency planning teams focusing on the area. We worked with local partners and public stakeholders to design and implement studies that assessed the effects of alternative restoration actions on flooding and erosion patterns, socioeconomics, cultural resources, and public access and recreation. We found that by explicitly and scientifically melding societal and ecosystem perspectives, it was possible to identify restoration actions that simultaneously improve both ecosystem health and the services (e.g., flood protection and recreation) that the Sacramento River and its floodplain provide to people. Further, we found that by directly engaging with local stakeholders to formulate, implement, and interpret the studies, we were able to develop a high level of trust that ultimately translated into widespread support for the project.  相似文献   
329.
330.
Fischer AR  Werner P  Goss KU 《Chemosphere》2011,82(2):210-214
The dye malachite green (MG) is used worldwide as a fungicide in aquaculture. It is a toxic substance which in aqueous solutions is partly converted into its non-ionic colorless form (leucocarbinol). The equilibrium between these two forms is pH-dependent (pK = 6.9). To assess the photodegradation of MG under sunlight conditions, both species were irradiated separately in aqueous solutions with different pH values (4.0 and 12.0) using various ultraviolet and visible wavelength ranges (UV/VIS). A 700 W high-pressure mercury lamp with special filters was used. No artificial photooxidizers such as H2O2 or TiO2 were added. MG leucocarbinol proved to be much more sensitive to irradiation than the dye form. Quantum yields Φ were calculated for some wavelength ranges as follows: MG carbinol: Φ(280-312nm) is 4.3 × 10−3, Φ(313-410nm) is 5.8 × 10−3, and MG dye: Φ(280-312nm) is 4.8 × 10−5, Φ(313-365nm) is 1.1 × 10−5, and Φ(>365nm) is 0, respectively. Therefore, the solar photolysis of MG is an important sink and primarily depends on the photodegradation of the colorless leucocarbinol. During the irradiation of MG leucocarbinol with wavelengths >365 nm, an intermediate was formed which has photocatalytical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号