首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   3篇
环保管理   9篇
综合类   151篇
基础理论   33篇
污染及防治   35篇
评价与监测   12篇
社会与环境   5篇
灾害及防治   1篇
  2014年   5篇
  2011年   3篇
  2010年   9篇
  2009年   6篇
  2008年   5篇
  2007年   11篇
  2006年   10篇
  2004年   6篇
  2003年   5篇
  2001年   7篇
  2000年   7篇
  1998年   3篇
  1997年   4篇
  1995年   3篇
  1989年   3篇
  1973年   2篇
  1969年   2篇
  1966年   2篇
  1965年   6篇
  1964年   4篇
  1962年   2篇
  1961年   8篇
  1960年   3篇
  1959年   5篇
  1958年   2篇
  1957年   7篇
  1956年   2篇
  1955年   8篇
  1954年   3篇
  1952年   3篇
  1951年   2篇
  1950年   3篇
  1948年   2篇
  1944年   2篇
  1943年   2篇
  1941年   4篇
  1940年   4篇
  1939年   7篇
  1938年   2篇
  1937年   2篇
  1936年   2篇
  1935年   4篇
  1934年   2篇
  1931年   3篇
  1930年   6篇
  1929年   3篇
  1922年   5篇
  1919年   2篇
  1918年   2篇
  1914年   2篇
排序方式: 共有250条查询结果,搜索用时 15 毫秒
91.
Results of leaching experiments using active and inactively simulated HLW glass in concentrated NaCl solution are described. Measured solution concentrations of glass components, fission products and actinides are compared with computed data. The computed pH value corresponds with the findings from experiments with inactively simulated glass samples. Moreover, the concentrations of silica and strontium can be described adequately by reaction path modelling. The computed U concentration is explained by the precipitation of schoepite or Na2U2O7. The computed Am concentration significantly exceeds the measured data. This may be attributed to sorption processes on corrosion products of the glass, which are relevant also for lanthanide elements under the conditions of the experiments. This hypothesis is tested by solid solution approaches and by computing sorption of Am onto SiO2 precipitates.  相似文献   
92.
We present a five-year (1997–2001) numerical simulation of daily mean chlorophyll a concentrations at station Geesthacht Weir on the lower Elbe River (Germany) using an extremely simple Lagrangian model driven by (a) water discharge, global radiation, water temperature, and (b) silica observations at station Schmilka in the upper reach of the Elbe River. Notwithstanding the lack of many mechanistic details, the model is able to reproduce observed chlorophyll a variability surprisingly well, including a number of sharp valleys and ascents/descents in the observed time series. The model's success is based on the assumption of three key effects: prevailing light conditions, sporadic limitation of algal growth due to lack of silica and algae loss rates that increase above an empirically specified temperature threshold of 20 °C. Trimmed-down model versions are studied to analyse the model's success in terms of these mechanisms.In each of the five years the model consistently fails, however, to properly simulate characteristic steep increases of chlorophyll a concentrations after pronounced spring minima. Curing this model deficiency by global model re-calibration was found to be impossible. However, suspension of silica consumption by algae for up to 10 days in spring is shown to serve as a successful placeholder for processes that are disregarded in the model but apparently play an important role in the distinctly marked period of model failure. For the remainder of the year the very simple model was found to be adequate.  相似文献   
93.
The characteristics of fine particulate pollution(PM10and PM25)were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors: PM2.5 mass concentration and humidity were positively correlated,and PM2.5mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more.  相似文献   
94.

Background, aim, and scope

The chemical substance 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant used as an industrial defoaming agent and in various other applications. Its commercial name is Surynol 104® and the related ethoxylates are also available as Surfynol® 420, 440, 465 and 485 which are characterized by different grades of ethoxylation of TMDD at both hydroxyl functional groups. TMDD and its ethoxylates offer several advantages in waterborne industrial applications in coatings, inks, adhesives as well as in paper industries. TMDD and its ethoxylates can be expected to reach the aquatic environment due its widespread use and its physico-chemical properties. TMDD has previously been detected in several rivers of Germany with concentrations up to 2.5?µg/L. In the United States, TMDD was also detected in drinking water. However, detailed studies about its presence and distribution in the aquatic environment have not been carried out so far. The aim of the present study was the analysis of the spatial and temporal concentration variations of TMDD in the river Rhine at the Rheingütestation Worms (443.3 km). Moreover, the transported load in the Rhine was investigated during two entire days and 7 weeks between November 2007 and January 2008.

Materials and methods

The sampling was carried out at three different sampling points across the river. Sampling point MWL1 is located in the left part of the river, MWL2 in the middle part, and MWL4 in the right part. One more sampling site (MWL3) was run by the monitoring station until the end of 2006, but was put out of service due to financial constrains. The water at the left side of the river Rhine (MWL1) is influenced by sewage from a big chemical plant in Ludwigshafen and by the sewage water from this city. The water at the right side of the river Rhine (MWL4) is largely composed of the water inflow from river Neckar, discharging into Rhine 14.9 km upstream from the sampling point and of communal and industrial wastewater from the city Mannheim. The water from the middle of the river (MWL2) is largely composed of water from the upper Rhine. Water samples were collected in 1-L bottles by an automatic sampler. The water samples were concentrated by use of solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). The quantification was carried out with the internal standard method. Based on these results, concentration variations were determined for the day profiles and week profiles. The total number of analyzed samples was 219.

Results

The results of this study provide information on the temporal concentration variability of TMDD in river Rhine in a cross section at one particular sampling point (443.3 km). TMDD was detected in all analyzed water samples at high concentrations. The mean concentrations during the 2 days were 314 ng/L in MWL1, 246 ng/L in MWL2, and 286 ng/L in MWL4. The variation of concentrations was low in the day profiles. In the week profiles, a trend of increasing TMDD concentrations was detected particularly in January 2008, when TMDD concentrations reached values up to 1,330 ng/L in MWL1. The mean TMDD concentrations during the week profiles were 540 ng/L in MWL1, 484 ng/L in MWL2, and 576 ng/L in MWL4. The loads of TMDD were also determined and revealed to be comparable in all three sections of the river. The chemical plant located at the left side of the Rhine is not contributing additional TMDD to the river. The load of TMDD has been determined to be 62.8 kg/d on average during the entire period. By extrapolation of data obtained from seven week profiles the annual load was calculated to 23 t/a.

Discussion

The permanent high TMDD concentrations during the investigation period indicate an almost constant discharge of TMDD into the river. This observation argues for effluents of municipal wastewater treatment plants as the most likely source of TMDD in the river. Another possible source might be the degradation of ethoxylates of TMDD (Surfynol® series 400), in the WWTPs under formation of TMDD followed by discharge into the river. TMDD has to be considered as a high-production-volume (HPV) chemical based on the high concentrations found in this study. In the United States, TMDD is already in the list of HPV chemicals from the Environmental Protection Agency (EPA). However, the amount of TMDD production in Europe is unknown so far and also the biodegradation rates of TMDD in WWTPs have not been investigated.

Conclusions

TMDD was found in high concentrations during the entire sampling period in the Rhine river at the three sampling points. During the sampling period, TMDD concentrations remained constant in each part of the river. These results show that TMDD is uniformly distributed in the water collected at three sampling points located across the river. ‘Waves’ of exceptionally high concentrations of TMDD could not be detected during the sampling period. These results indicate that the effluents of WWTPs have to be considered as the most important sources of TMDD in river Rhine.

Recommendations and perspectives

Based also on the occurrence of TMDD in different surface waters of Germany with concentrations up to 2,500 ng/L and its presence in drinking water in the USA, more detailed investigations regarding its sources and distribution in the aquatic environment are required. Moreover, the knowledge with respect to its ecotoxicity and its biodegradation pathway is scarce and has to be gained in more detail. Further research is necessary to investigate the rate of elimination of TMDD in municipal and industrial wastewater treatment plants in order to clarify the degradation rate of TMDD and to determine to which extent effluents of WWTPs contribute to the input of TMDD into surface waters. Supplementary studies are needed to clarify whether the ethoxylates of TMDD (known as Surfynol 400® series) are hydrolyzed in the aquatic environment resulting in formation of TMDD similar to the well known cleavage of nonylphenol ethoxylates into nonylphenols. The stability of TMDD under anaerobic conditions in groundwater is also unknown and should be studied.
  相似文献   
95.
The photodegradation and biotic transformation of the pharmaceuticals lidocaine (LDC), tramadol (TRA) and venlafaxine (VEN), and of the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) in the aquatic environmental have been investigated. Photodegradation experiments were carried out using a medium pressure Hg lamp (laboratory experiments) and natural sunlight (field experiments). Degradation of the target compounds followed a first-order kinetic model. Rates of direct photodegradation (light absorption by the compounds itself) at pH 6.9 were very low for all of the target analytes (?0.0059 h?1 using a Hg lamp and ?0.0027 h?1 using natural sunlight), while rates of indirect photodegradation (degradation of the compounds through photosensitizers) in river water at pH 7.5 were approximately 59 (LDC), 5 (TRA), 8 (VEN), 15 (ODT) and 13 times (ODV) higher than the rates obtained from the experiments in ultrapure water. The accelerated photodegradation of the target compounds in natural water is attributed mainly to the formation of hydroxyl radicals through photochemical reactions. Biotic (microbial) degradation of the target compounds in surface water has been shown to occur at very low rates (?0.00029 h?1). The half-life times determined from the field experiments were 31 (LDC), 73 (TRA), 51 (VEN), 21 (ODT) and 18 h (ODV) considering all possible mechanisms of degradation for the target compounds in river water (direct photodegradation, indirect photodegradation and biotic degradation).  相似文献   
96.
Four small freshwater streams in the region known as Hessisches Ried in Germany were investigated with respect to the temporal and spatial concentration variations of the endocrine disruptors bisphenol A (BPA), 4-tert-octylphenol (4-tert-OP), and the technical isomer mixture of 4-nonylphenol (tech.-4-NP). Measured concentrations of the target compounds in the river water samples ranged from <20 ng/l to 1927 ng/l, <10 ng/l to 770 ng/l, and <10 ng/l to 420 ng/l for BPA, 4-tert-OP and tech.-4-NP, respectively. BPA levels were, with the exception of two samples, below the predicted no-effect concentration (PNEC) for water organisms. Tech.-4-NP concentrations showed a significant tendency of decreasing concentrations during the sampling period. This is mainly attributed to the implementation of the European Directive 2003/53/EG, which restricts both the marketing and use of nonylphenols. Results from the analysis of additionally collected water samples from sewage treatment plant (STP) effluents indicate that the STPs cannot be the only sources for tech.-4-NP found in the river water.  相似文献   
97.
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号