首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   3篇
环保管理   11篇
综合类   152篇
基础理论   36篇
污染及防治   45篇
评价与监测   12篇
社会与环境   5篇
  2017年   3篇
  2014年   6篇
  2013年   12篇
  2011年   3篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   11篇
  2006年   10篇
  2004年   6篇
  2003年   5篇
  2001年   7篇
  2000年   8篇
  1998年   3篇
  1997年   4篇
  1995年   3篇
  1993年   3篇
  1989年   3篇
  1973年   3篇
  1965年   6篇
  1964年   4篇
  1962年   2篇
  1961年   8篇
  1960年   3篇
  1959年   4篇
  1958年   2篇
  1957年   7篇
  1956年   2篇
  1955年   8篇
  1954年   3篇
  1952年   3篇
  1951年   3篇
  1950年   3篇
  1948年   2篇
  1944年   2篇
  1943年   2篇
  1941年   4篇
  1940年   4篇
  1939年   7篇
  1938年   3篇
  1937年   2篇
  1936年   2篇
  1935年   4篇
  1934年   2篇
  1931年   3篇
  1930年   5篇
  1929年   2篇
  1922年   5篇
  1919年   2篇
  1914年   2篇
排序方式: 共有265条查询结果,搜索用时 93 毫秒
71.
72.
73.
74.
75.
76.
77.
太湖夏季水体中尿素的来源探析   总被引:6,自引:2,他引:4  
为研究尿素氮在太湖生态系统中的作用,于夏季采集湖体及环湖河道水样进行尿素及不同形态氮素含量分析.通过河道及湖体的82个调查点位生态指标的同步分析,得出以下结果:①太湖尿素氮含量变化范围为0.011~0.161 mg·L-1,总体呈现出西北高,东南低的变化趋势,与流域主要污染源分布有关;②太湖水体溶解性氮以无机氮库为主,铵硝比为5∶1,其中尿素氮占总氮、溶解性总氮、溶解性有机氮和生物可利用氮的平均质量分数分别为2.28%、5.91%、15.86%、6.22%,生态作用不容忽视;③环湖河道的尿素氮含量比湖体高出一倍,出湖河道尿素氮含量还略高于入湖河道;④太湖尿素氮与其他形式氮之间可能存在彼此转换关系,尿素氮含量与高锰酸盐指数、不同形态氮含量均呈显著正相关关系,与溶解氧呈显著负相关关系;湖体的尿素氮含量与叶绿素a含量呈弱正相关,与底栖生物、浮游动物种群的空间分布有密切联系.本研究表明太湖水体中尿素氮可能是湖体有机、无机态氮转化的桥梁,是湖体自身氮素循环快慢的标志,氮的循环速率控制尿素氮含量,高氮(特别是有机态氮)含量及低溶解氧条件是尿素升高的前提.太湖湖体尿素含量受外源输入和内源转化的双重影响.  相似文献   
78.
The development of convenient and competitive devices and methods for monitoring of organic pollutants in the aquatic environment is of increasing interest. An integrative passive sampling system has been developed which consists of a solid poly(dimethylsiloxane) (PDMS) material (tube or rod), acting as hydrophobic organic receiving phase, enclosed in a water-filled or an air-filled low-density polyethylene (LDPE) membrane tubing. These samplers enable the direct analysis of the pollutants accumulated during exposure in the receiving phase by thermodesorption-GC/MS, avoiding expensive sample preparation and cleanups. The capabilities of these sampling devices were studied for the sampling of 20 persistent organic pollutants (chlorobenzenes, hexachlorocyclohexanes, p,p'-DDE, PAHs, and PCBs) in laboratory exposure experiments. For the three sampler designs investigated the uptake of all target analytes was integrative over exposure periods up to 9 days (except PCB 101). The determined sampling rates range from 4 to 1340 microl h(-1) for the water-filled samplers and from 20 to 6360 microl h(-1) for the air-filled ones, respectively. The sampling rate of the analytes is dependent on their molecular weight, partition between water and sampler media (PDMS, polyethylene, water, air) and also of the sampler design. The passive samplers enable the estimation of time-weighted average (TWA) concentration of water pollutants in the lower ng l(-1) to pg l(-1) range.  相似文献   
79.
80.
With increasing concern over degradation of aquatic resources, issues of liability, and maintenance costs, removal of small dams has become increasing popular. Although the benefits of removal seem to outweigh the drawbacks, there is a relative paucity of studies documenting the extent and magnitude of biological and chemical changes associated with dam removal, especially those evaluating potential changes in contaminant inventories. In August and November of 2000, a run-of-the-river dam on Manatawny Creek (southeast Pennsylvania) was removed in a two-stage process. To assess the effects of dam removal on the contaminant redistribution within the creek, sedimentary concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace metals (Cd, Cr, Cu, Ni, Pb, Zn) were evaluated prior to and several months after removal. Pre- and post-removal analyses revealed elevated and spatially variable concentrations of total PAHs (ranging from approximately 200 to 81,000 ng(g dry weight) and low to moderate concentrations of trace metals and PCBs. The concentrations of these sedimentary contaminants pre- versus post-removal were not significantly different. Additionally, though the impoundment received storm water run-off and associated contaminants from the adjacent city of Pottstown, the total inventory of fine-grain sediments in the impoundment prior to removal was very low. The removal of the low-level Manatawny Creek dam did not significantly redistribute contaminants downstream. However, each dam removal should be assessed on a case by case basis where the potential of sedimentary contaminant redistribution upon dam removal exists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号