首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   3篇
环保管理   23篇
综合类   168篇
基础理论   42篇
污染及防治   58篇
评价与监测   13篇
社会与环境   6篇
  2018年   6篇
  2016年   3篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   5篇
  2010年   9篇
  2009年   8篇
  2008年   7篇
  2007年   17篇
  2006年   13篇
  2005年   5篇
  2004年   7篇
  2003年   8篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1993年   3篇
  1992年   3篇
  1989年   4篇
  1981年   4篇
  1966年   4篇
  1965年   6篇
  1964年   5篇
  1961年   8篇
  1960年   3篇
  1959年   4篇
  1957年   7篇
  1955年   8篇
  1954年   5篇
  1952年   3篇
  1950年   3篇
  1941年   4篇
  1940年   4篇
  1939年   9篇
  1938年   3篇
  1937年   3篇
  1936年   2篇
  1935年   4篇
  1934年   2篇
  1931年   3篇
  1930年   5篇
  1929年   2篇
  1922年   5篇
  1919年   2篇
  1914年   2篇
排序方式: 共有314条查询结果,搜索用时 46 毫秒
101.
The characteristics of fine particulate pollution(PM10and PM25)were measured at urban and suburban sites in Jinan during the 2008-2009 heating and non-heating seasons.The results showed that PM10 and PM2.5 pollution was quite serious,and PM mass concentration was higher during the heating season than the non-heating season.PM was the highest in the chemical factory and lowest in the development zone.The mass concentrations of PM10 and PM2.5 were linearly related,and the mass concentration ratio of PM2.5/PM10 was up to 0.59 in urban areas.PM pollution in Jinan was related to local meteorological factors: PM2.5 mass concentration and humidity were positively correlated,and PM2.5mass concentration was negatively correlated with both click on the temperature and wind speed,although wind speed varied more.  相似文献   
102.
The photodegradation and biotic transformation of the pharmaceuticals lidocaine (LDC), tramadol (TRA) and venlafaxine (VEN), and of the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) in the aquatic environmental have been investigated. Photodegradation experiments were carried out using a medium pressure Hg lamp (laboratory experiments) and natural sunlight (field experiments). Degradation of the target compounds followed a first-order kinetic model. Rates of direct photodegradation (light absorption by the compounds itself) at pH 6.9 were very low for all of the target analytes (?0.0059 h?1 using a Hg lamp and ?0.0027 h?1 using natural sunlight), while rates of indirect photodegradation (degradation of the compounds through photosensitizers) in river water at pH 7.5 were approximately 59 (LDC), 5 (TRA), 8 (VEN), 15 (ODT) and 13 times (ODV) higher than the rates obtained from the experiments in ultrapure water. The accelerated photodegradation of the target compounds in natural water is attributed mainly to the formation of hydroxyl radicals through photochemical reactions. Biotic (microbial) degradation of the target compounds in surface water has been shown to occur at very low rates (?0.00029 h?1). The half-life times determined from the field experiments were 31 (LDC), 73 (TRA), 51 (VEN), 21 (ODT) and 18 h (ODV) considering all possible mechanisms of degradation for the target compounds in river water (direct photodegradation, indirect photodegradation and biotic degradation).  相似文献   
103.
The 1999/31 Elemental Carbon Directive sets strict rules on the disposal of untreated municipal solid waste in the European Union countries and forces a reduction of the biodegradable quantities disposed off to landfills up to 35% of the amount produced in 1995 in the coming decade. More environmentally friendly waste management options shall be promoted under the framework of the Community Waste Strategy ([96] 399 Final). In this context, the production and thermal use of solid recovered fuels (SRFs), derived from nonhazardous bioresidues and mixed- and mono-waste streams, could be a key element in a future waste management system. Within the scope of the European Demonstration Project, RECOFUEL, SRF cocombustion was demonstrated in two large-scale lignite-fired coal boilers at RWE power station in Weisweiler, Germany. As a consequence of the high biogenic share of the cocombusted material, this approach can be considered beneficial following European Directive 2001/77/EC on electricity from renewable energy sources (directive). During the experimental campaign, the share of SRF in the overall thermal input was adjusted to approximately 2%, resulting into a feeding rate of approximately 25 t/hr. The measurement campaign included boiler measurements in different locations, fuel and ash sampling, and its characterization. The corrosion rates were monitored by dedicated corrosion probes. The overall results showed no significant influence of SRF cocombustion on boiler operation, emissions behavior, and residues quality for the thermal shares applied. Also, no effect of the increased chlorine concentration of the recovered fuel was observed in the flue gas path after the desulfurization unit.  相似文献   
104.
Lemaire J  Croze V  Maier J  Simonnot MO 《Chemosphere》2011,84(9):1181-1187
An industrial coating site in activity located on a chalky plateau, contaminated by BTEX (mainly xylenes, no benzene), is currently remediated by in situ chemical oxidation (ISCO). We present the bench scale study that was conducted to select the most appropriate oxidant. Ozone and catalyzed hydrogen peroxide (Fenton’s reaction) were discarded since they were incompatible with plant activity. Permanganate, activated percarbonate and activated persulfate were tested. Batch experiments were run with groundwater and groundwater-chalk slurries with these three oxidants. Total BTEX degradation in groundwater was reached with all the oxidants. The molar ratios [oxidant]:[Fe2+]:[BTEX] were 100:0:1 with permanganate, 100:100:1 with persulfate and 25:100:1 with percarbonate. Precipitation of either manganese dioxide or iron carbonate (siderite) occurred. The best results with chalk slurries were obtained with permanganate at the molar ratio 110:0:1 and activated persulfate at the molar ratio 110:110:1. To avoid precipitation, persulfate was also used without activation at the molar ratio 140:1. Natural Oxidant Demand measured with both oxidants was lower than 5% of initial oxidant contents. Activated percarbonate was not appropriate because of radical scavenging by carbonated media. Permanganate and persulfate were both effective at oxidant concentrations of ca 1 g kg−1 with permanganate and 1.8 g kg−1 with persulfate and adapted to site conditions. Activation of persulfate was not mandatory. This bench scale study proved that ISCO remediation of a chalky aquifer contaminated by mainly xylenes was possible with permanganate and activated or unactivated persulfate.  相似文献   
105.

Background, aim, and scope

The chemical substance 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant used as an industrial defoaming agent and in various other applications. Its commercial name is Surynol 104® and the related ethoxylates are also available as Surfynol® 420, 440, 465 and 485 which are characterized by different grades of ethoxylation of TMDD at both hydroxyl functional groups. TMDD and its ethoxylates offer several advantages in waterborne industrial applications in coatings, inks, adhesives as well as in paper industries. TMDD and its ethoxylates can be expected to reach the aquatic environment due its widespread use and its physico-chemical properties. TMDD has previously been detected in several rivers of Germany with concentrations up to 2.5?µg/L. In the United States, TMDD was also detected in drinking water. However, detailed studies about its presence and distribution in the aquatic environment have not been carried out so far. The aim of the present study was the analysis of the spatial and temporal concentration variations of TMDD in the river Rhine at the Rheingütestation Worms (443.3 km). Moreover, the transported load in the Rhine was investigated during two entire days and 7 weeks between November 2007 and January 2008.

Materials and methods

The sampling was carried out at three different sampling points across the river. Sampling point MWL1 is located in the left part of the river, MWL2 in the middle part, and MWL4 in the right part. One more sampling site (MWL3) was run by the monitoring station until the end of 2006, but was put out of service due to financial constrains. The water at the left side of the river Rhine (MWL1) is influenced by sewage from a big chemical plant in Ludwigshafen and by the sewage water from this city. The water at the right side of the river Rhine (MWL4) is largely composed of the water inflow from river Neckar, discharging into Rhine 14.9 km upstream from the sampling point and of communal and industrial wastewater from the city Mannheim. The water from the middle of the river (MWL2) is largely composed of water from the upper Rhine. Water samples were collected in 1-L bottles by an automatic sampler. The water samples were concentrated by use of solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). The quantification was carried out with the internal standard method. Based on these results, concentration variations were determined for the day profiles and week profiles. The total number of analyzed samples was 219.

Results

The results of this study provide information on the temporal concentration variability of TMDD in river Rhine in a cross section at one particular sampling point (443.3 km). TMDD was detected in all analyzed water samples at high concentrations. The mean concentrations during the 2 days were 314 ng/L in MWL1, 246 ng/L in MWL2, and 286 ng/L in MWL4. The variation of concentrations was low in the day profiles. In the week profiles, a trend of increasing TMDD concentrations was detected particularly in January 2008, when TMDD concentrations reached values up to 1,330 ng/L in MWL1. The mean TMDD concentrations during the week profiles were 540 ng/L in MWL1, 484 ng/L in MWL2, and 576 ng/L in MWL4. The loads of TMDD were also determined and revealed to be comparable in all three sections of the river. The chemical plant located at the left side of the Rhine is not contributing additional TMDD to the river. The load of TMDD has been determined to be 62.8 kg/d on average during the entire period. By extrapolation of data obtained from seven week profiles the annual load was calculated to 23 t/a.

Discussion

The permanent high TMDD concentrations during the investigation period indicate an almost constant discharge of TMDD into the river. This observation argues for effluents of municipal wastewater treatment plants as the most likely source of TMDD in the river. Another possible source might be the degradation of ethoxylates of TMDD (Surfynol® series 400), in the WWTPs under formation of TMDD followed by discharge into the river. TMDD has to be considered as a high-production-volume (HPV) chemical based on the high concentrations found in this study. In the United States, TMDD is already in the list of HPV chemicals from the Environmental Protection Agency (EPA). However, the amount of TMDD production in Europe is unknown so far and also the biodegradation rates of TMDD in WWTPs have not been investigated.

Conclusions

TMDD was found in high concentrations during the entire sampling period in the Rhine river at the three sampling points. During the sampling period, TMDD concentrations remained constant in each part of the river. These results show that TMDD is uniformly distributed in the water collected at three sampling points located across the river. ‘Waves’ of exceptionally high concentrations of TMDD could not be detected during the sampling period. These results indicate that the effluents of WWTPs have to be considered as the most important sources of TMDD in river Rhine.

Recommendations and perspectives

Based also on the occurrence of TMDD in different surface waters of Germany with concentrations up to 2,500 ng/L and its presence in drinking water in the USA, more detailed investigations regarding its sources and distribution in the aquatic environment are required. Moreover, the knowledge with respect to its ecotoxicity and its biodegradation pathway is scarce and has to be gained in more detail. Further research is necessary to investigate the rate of elimination of TMDD in municipal and industrial wastewater treatment plants in order to clarify the degradation rate of TMDD and to determine to which extent effluents of WWTPs contribute to the input of TMDD into surface waters. Supplementary studies are needed to clarify whether the ethoxylates of TMDD (known as Surfynol 400® series) are hydrolyzed in the aquatic environment resulting in formation of TMDD similar to the well known cleavage of nonylphenol ethoxylates into nonylphenols. The stability of TMDD under anaerobic conditions in groundwater is also unknown and should be studied.
  相似文献   
106.
Four small freshwater streams in the region known as Hessisches Ried in Germany were investigated with respect to the temporal and spatial concentration variations of the endocrine disruptors bisphenol A (BPA), 4-tert-octylphenol (4-tert-OP), and the technical isomer mixture of 4-nonylphenol (tech.-4-NP). Measured concentrations of the target compounds in the river water samples ranged from <20 ng/l to 1927 ng/l, <10 ng/l to 770 ng/l, and <10 ng/l to 420 ng/l for BPA, 4-tert-OP and tech.-4-NP, respectively. BPA levels were, with the exception of two samples, below the predicted no-effect concentration (PNEC) for water organisms. Tech.-4-NP concentrations showed a significant tendency of decreasing concentrations during the sampling period. This is mainly attributed to the implementation of the European Directive 2003/53/EG, which restricts both the marketing and use of nonylphenols. Results from the analysis of additionally collected water samples from sewage treatment plant (STP) effluents indicate that the STPs cannot be the only sources for tech.-4-NP found in the river water.  相似文献   
107.
Singhal N  Jaffé P  Maier W  Jho EH 《Chemosphere》2007,69(11):1790-1797
This laboratory study explores the effect of growth substrate concentration on the anaerobic degradation of trichloroethylene (TCE) in sand packed columns. In all columns the growth substrate rapidly degraded to gas, that formed a separate phase. Biomass accumulated in the 0–4.8 cm section of the columns in proportion to the influent growth substrate concentration and biomass concentrations in the remaining sections of all columns were similar to the column receiving the lowest substrate concentration. Increases in growth substrate concentration up to 3030 mg-COD l−1 promoted TCE degradation, but a further increase to 14 300 mg-COD l−1 reduced the amount of TCE completely dechlorinated but did not affect the production of chlorinated TCE intermediates. The mathematical model developed here satisfactorily described the enhancement in TCE dehalogenation for substrate concentration up to 3030 mg-COD l−1; reproducing TCE dehalogenation for 14 300 mg-COD l−1 required that the moisture content used in simulation be lowered to 0.1. The study shows that volatilization of TCE can be significant and volatilization losses should be taken into account when anaerobic activity in in-situ bioremediation applications is stimulated via addition of growth substrates. An implication of the modeling simulations is that maintaining a lower, but uniform, substrate concentration over the contaminated region may lead to faster contaminant degradation.  相似文献   
108.
Polybrominated diphenyl ether in sewage sludge in Germany   总被引:2,自引:0,他引:2  
Knoth W  Mann W  Meyer R  Nebhuth J 《Chemosphere》2007,67(9):1831-1837
Sewage sludge samples from 11 municipal waste water treatment plants in Germany were collected from March 2002 to June 2003. Total Tri- to HpBDE concentrations (sum of significant congeners BDE 28, 47, 99, 153, 154 and 183) ranged from 12.5 to 288 (median 108) and DeBDE (BDE 209) concentrations from 97.1 to 2217 (median 256) ng/gd.m. BDE 209 dominated the congener profile. A significant change of the Tri- to HpBDE congener profile (% of total BDE 28, 47, 99, 153, 154, 183 without 209) in sludge from different stages of the waste water treatment process (primary sludge, secondary excess sludge and (dewatered) digested sludge), indicating a degradation of DeBDE to these congeners, was not observed.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号