Analytical methods for the isolation and determination of cypermethrin in milk, based on the solid-phase microextraction (SPME) and QuEChERS methods (Quick, Easy, Cheap, Effective, Rugged, and Safe) are presented. The SPME technique was not appropriate to analyse cypermethrin in milk, even establishing the best extraction conditions, polydimethylsiloxane fiber, 60 min time extraction, 60 °C temperature extraction, addition of salt (NaCl) and stirring rate. The extraction efficiency was low probably because of the matrix constituents. The QuEChERS method involves the extraction of the analyte with acetonitrile and simultaneous liquid-liquid partitioning formed by adding anhydrous MgSO(4) plus NaCl, followed by the removal of residual water and cleanup using a procedure called dispersive solid-phase extraction, in which anhydrous MgSO(4) plus PSA and C18 are mixed with 1 mL of acetonitrile extract. The detection and quantification limits were 0.01 and 0.04 mg kg(-1), respectively, and the percentage recovery obtained ranged from 92 to 105% with relative standard deviations below 7%. 相似文献
Column experiments were conducted for examining the effectiveness of the cationic hydrogel on Cr(VI) removal from groundwater and soil. For in-situ groundwater remediation, the effects of background anions, humic acid (HA) and pH were studied. Cr(VI) has a higher preference for being adsorbed onto the cationic hydrogel than sulphate, bicarbonate ions and HA. However, the adsorbed HA reduced the Cr(VI) removal capacity of the cationic hydrogel, especially after regeneration of the adsorbents, probably due to the blockage of adsorption sites. The Cr(VI) removal was slightly influenced by the groundwater pH that could be attributed to Cr(VI) speciation. The 6-cycle regeneration and reusability study shows that the effectiveness of the cationic hydrogel remained almost unchanged. On average, 93% of the adsorbed Cr(VI) was recovered in each cycle and concentrated Cr(VI) solution was obtained after regeneration. For in-situ soil remediation, the flushing water pH had an insignificant effect on the release of Cr(VI) from the soils. Multiple-pulse flushing increased the removal of Cr(VI) from the soils. In contrast, more flushing water and longer operation may be required to achieve the same removal level by continuous flushing. 相似文献
A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%. 相似文献
Simulations with the process oriented Forest-DNDC model showed reasonable to good agreement with observations of soil water contents of different soil layers, annual amounts of seepage water and approximated rates of nitrate leaching at 79 sites across Germany. Following site evaluation, Forest-DNDC was coupled to a GIS to assess nitrate leaching from German forest ecosystems for the year 2000. At national scale leaching rates varied in a range of 0–>80 kg NO3–N ha−1 yr−1 (mean 5.5 kg NO3–N ha−1 yr−1). A comparison of regional simulations with the results of a nitrate inventory study for Bavaria showed that measured and simulated percentages for different nitrate leaching classes (0–5 kg N ha−1 yr−1:66% vs. 74%, 5–15 kg N ha−1 yr−1:20% vs. 20%, >15 kg N ha−1 yr−1:14% vs. 6%) were in good agreement. Mean nitrate concentrations in seepage water ranged between 0 and 23 mg NO3–N l−1. 相似文献
Tracer gas was released upwind of a two-compartment complex shaped building under unstable atmospheric conditions. The mean wind direction was normal to or at 45° to the long face of the building. The general patterns of concentration distribution on the building external walls and inside the building were analysed and the influence of natural and mechanical ventilation on indoor concentration distributions was discussed. Mean concentration levels, as well as the concentration fluctuation intensity, were higher on the windward walls of the building, although concentration levels varied along each wall. Concentration fluctuations measured inside the building were lower than those measured outside. Inside the two compartments of the building, the time series of concentrations had a similar general behaviour; however, gas concentrations took approximately 1.5 times longer to reach the mean maximum concentration value at the downwind compartment 02 while they also decreased more rapidly in the upwind compartment 01 after the source was turned off. The highest indoor concentration and concentration fluctuation values were observed at the detectors located close to the windward walls, especially when the building windows were open. Experiments with and without natural ventilation suggested that infiltration and exfiltration of contaminants is much faster when the building windows are open, resulting to higher indoor concentration levels. Furthermore, mechanical ventilation tends to homogenize concentrations and suppress concentration fluctuations, leading to lower maximum concentration values. 相似文献
A monoclonal antibody-based competitive antibody-coated enzyme-linked immunosorbent assay (ELISA) was developed and optimized for determining chlorpyrifos residue in agricultural products. The IC(50) and IC(10) of this ELISA were 3.3 ng/mL and 0.1 ng/mL respectively. The average recoveries in six agricultural products were between 79.5% and 118.0%, with the intra-assay coefficient of variation being less than 8 %. The limit of detection for all tested products was 30 ng/g. To the best of our knowledge, this assay has the best specificity among all the published research on ELISAs for chlorpyrifos. 相似文献
Objective: This study investigated drivers' evaluation of a conventional autonomous emergency braking (AEB) system on high and reduced tire–road friction and compared these results to those of an AEB system adaptive to the reduced tire–road friction by earlier braking. Current automated systems such as the AEB do not adapt the vehicle control strategy to the road friction; for example, on snowy roads. Because winter precipitation is associated with a 19% increase in traffic crashes and a 13% increase in injuries compared to dry conditions, the potential of conventional AEB to prevent collisions could be significantly improved by including friction in the control algorithm. Whereas adaption is not legally required for a conventional AEB system, higher automated functions will have to adapt to the current tire–road friction because human drivers will not be required to monitor the driving environment at all times. For automated driving functions to be used, high levels of perceived safety and trust of occupants have to be reached with new systems. The application case of an AEB is used to investigate drivers' evaluation depending on the road condition in order to gain knowledge for the design of future driving functions.
Methods: In a driving simulator, the conventional, nonadaptive AEB was evaluated on dry roads with high friction (μ = 1) and on snowy roads with reduced friction (μ = 0.3). In addition, an AEB system adapted to road friction was designed for this study and compared with the conventional AEB on snowy roads with reduced friction. Ninety-six drivers (48 males, 48 females) assigned to 5 age groups (20–29, 30–39, 40–49, 50–59, and 60–75 years) drove with AEB in the simulator. The drivers observed and evaluated the AEB's braking actions in response to an imminent rear-end collision at an intersection.
Results: The results show that drivers' safety and trust in the conventional AEB were significantly lower on snowy roads, and the nonadaptive autonomous braking strategy was considered less appropriate on snowy roads compared to dry roads. As expected, the adaptive AEB braking strategy was considered more appropriate for snowy roads than the nonadaptive strategy. In conditions of reduced friction, drivers' subjective safety and trust were significantly improved when driving with the adaptive AEB compared to the conventional AEB. Women felt less safe than men when AEB was braking. Differences between age groups were not of statistical significance.
Conclusions: Drivers notice the adaptation of the autonomous braking strategy on snowy roads with reduced friction. On snowy roads, they feel safer and trust the adaptive system more than the nonadaptive automation. 相似文献
Objective: The objective of this article is to provide empirical evidence for safe speed limits that will meet the objectives of the Safe System by examining the relationship between speed limit and injury severity for different crash types, using police-reported crash data.
Method: Police-reported crashes from 2 Australian jurisdictions were used to calculate a fatal crash rate by speed limit and crash type. Example safe speed limits were defined using threshold risk levels.
Results: A positive exponential relationship between speed limit and fatality rate was found. For an example fatality rate threshold of 1 in 100 crashes it was found that safe speed limits are 40 km/h for pedestrian crashes; 50 km/h for head-on crashes; 60 km/h for hit fixed object crashes; 80 km/h for right angle, right turn, and left road/rollover crashes; and 110 km/h or more for rear-end crashes.
Conclusions: The positive exponential relationship between speed limit and fatal crash rate is consistent with prior research into speed and crash risk. The results indicate that speed zones of 100 km/h or more only meet the objectives of the Safe System, with regard to fatal crashes, where all crash types except rear-end crashes are exceedingly rare, such as on a high standard restricted access highway with a safe roadside design. 相似文献
AbstractObjective: Advanced driver assistance systems (ADAS) are a class of vehicle technologies designed to increase safety by providing drivers with timely warnings and autonomously intervening to avoid hazardous situations. Though laboratory testing suggests that ADAS technologies will greatly impact crash involvement rates, real-world evidence that characterizes their effectiveness is still limited. This study evaluates and quantifies the association of ADAS technologies with the likelihood of a moderate or severe crash for new-model BMWs in the United States.Methods: Vehicle ADAS option information for the cohort of model year 2014 and later BMW passenger vehicles sold after January 1, 2014 (n?=?1,063,503), was coded using VIN-identified options data. ADAS technologies of interest include frontal collision warning with autonomous emergency braking, lane departure warning, and blind spot detection. BMW Automated Crash Notification system data (from January 2014 to November 2017) were merged with vehicle data by VIN to identify crashed vehicles (n?=?15,507), including date, crash severity (delta V), and area of impact. Using Cox proportional hazards regression modeling, the study calculates the adjusted hazard ratio for crashing among BMW passenger vehicles with versus without ADAS technologies. The adjusted percentage reduction in moderate and severe crashes associated with ADAS is interpreted as one minus the hazard ratio.Results: Vehicles equipped with both autonomous emergency braking and lane departure warning were 23% less likely to crash than those not equipped (hazard ratio [HR]?=?0.77; 95% confidence interval [CI], 0.73–0.81), controlling for model year, vehicle size and body type. Autonomous emergency braking and lane departure warning generally occur together, making it difficult to tease apart their individual effects. Blind spot detection was associated with a 14% reduction in crashes after controlling for the presence of autonomous emergency braking and lane departure warning (HR =0.86; 95% CI, 0.744–0.99). Differences were observed by vehicle type and crash type. The combined effect of autonomous emergency braking and lane departure warning was greater in newer model vehicles: Equipped vehicles were 13% less likely to crash (HR =0.87; 95% CI, 0.79–0.95) among 2014 model year vehicles versus 34% less likely to crash (HR =0.66; 95% CI, 0.57–0.77) among 2017 model year vehicles.Conclusion: This robust cohort study contributes to the growing evidence on the effectiveness of ADAS technologies. 相似文献