首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4059篇
  免费   65篇
  国内免费   98篇
安全科学   176篇
废物处理   281篇
环保管理   916篇
综合类   307篇
基础理论   785篇
环境理论   3篇
污染及防治   1256篇
评价与监测   326篇
社会与环境   138篇
灾害及防治   34篇
  2023年   34篇
  2022年   61篇
  2021年   58篇
  2020年   38篇
  2019年   55篇
  2018年   78篇
  2017年   92篇
  2016年   131篇
  2015年   84篇
  2014年   110篇
  2013年   449篇
  2012年   182篇
  2011年   214篇
  2010年   190篇
  2009年   175篇
  2008年   222篇
  2007年   212篇
  2006年   217篇
  2005年   183篇
  2004年   147篇
  2003年   151篇
  2002年   146篇
  2001年   74篇
  2000年   61篇
  1999年   41篇
  1998年   54篇
  1997年   40篇
  1996年   39篇
  1995年   37篇
  1994年   31篇
  1993年   30篇
  1992年   29篇
  1991年   31篇
  1990年   29篇
  1989年   28篇
  1988年   31篇
  1987年   23篇
  1986年   25篇
  1985年   25篇
  1984年   43篇
  1983年   37篇
  1982年   38篇
  1981年   40篇
  1980年   28篇
  1979年   43篇
  1978年   28篇
  1977年   24篇
  1976年   19篇
  1971年   12篇
  1970年   9篇
排序方式: 共有4222条查询结果,搜索用时 46 毫秒
21.
Continuous visibility monitoring has been carried out inKwangju, Korea since May 1999. The total light extinctioncoefficient b ext measured by a transmissometer andreveals seasonal trends in urban visual air quality,especially under hazy conditions with a visual range of lessthan 15 km. Seasonal atmospheric visibility under lowrelative humidity during the winter was observed to be betterthan during any other seasons. Summertime visibility wasseverely degraded due to highly increased light scattering byhygroscopic particles under high humidity atmosphericconditions. Visibility during spring and fall was alsomoderate. However, yellow sand in spring caused the lowestvisibility conditions over the measurement area for a fewdays. With continuous monitoring using the transmissometer,the daily average seasonal visual range was measured to be13.1, 9.2, 11.0, and 13.9 km in spring, summer, falland winter, respectively. Under the atmospheric humiditycondition less than 60%, visual range was observed tobe 16.1, 13.9, 15.1, and 16.6 km in spring, summer,fall, and winter, respectively. The mean light extinctionbudget by sulfate and nitrate aerosols was determined to bethe highest value of 63.71% during the summer and thelowest value of 27.08% during spring. During the `yellow sand dust' period, a mean light extinction budget by soil particles was estimated to be at an unusually high value of 44.22%.  相似文献   
22.
Methane emissions from natural wetlands   总被引:3,自引:0,他引:3  
Methane is considered one of the most important greenhouse gases in the atmosphere. Because of the strict anaerobic conditions required by CH4-generating microorganisms, natural wetland ecosystems are one of the main sources of biogenic CH4. The total natural wetland area is estimated to be 5.3 to 5.7 × 1012 m2, making up less than 5% of the Earth's land surface. However, natural wetland plays a disproportionately large role in CH4 emissions. Wetlands are likely the largest natural sources of CH4 to the atmosphere, accounting for about 20% of the current global annual emission. Out of the total amount of CH4 emitted, northern wetlands contribute 34%, temperate wetlands 5%, and tropical systems about 60%.Because of the unique characteristics and high productivity, wetland ecosystems are important in the global carbon cycle. Natural wetlands are permanently or temporarily saturated. Strict anaerobic conditions consequently develop, which allows methanogenesis to occur. But the thin oxic layer and the oxic plant rhizophere promote activity of CH4-oxidizing bacteria or methanotrophs. Thus, both CH4 formation and consumption in wetland systems are microbiological processes and are controlled by many factors. Eight of the controlling factors, including carbon supply, soil oxidation-reduction status, pH, temperature, vegetation, salinity and sulfate content, soil hydrological conditions and CH4 oxidation are discussed in this paper.  相似文献   
23.
Spatial and temporal trends in visibility are examined at a national level. It is shown that visibility is impaired in all antional parks approximately 90% of the time, and that eastern visibilities are about 10 times lower than western visibilities. Measurement of atmospheric particulates that affect visibility shows that sulfates associated with man-made emissions of sulfur dioxide are the single largest contributor to visibility reduction, except in the northwestern United States, where organic aerosols contribute significantly. In the East, coal fired power plants along the Ohio River Vallery contribute the most SO2, while oil refining activities and other industrial sources in southern California, copper smelters in southern Arizona, and industrial activity along the Gulf Coast of Mexico contribute most of the SO2, and thus sulfates, in the West.Contribution from Fourth World Wilderness Congress-Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.The assumptions, findings, conclusions, judgments and views presented herein are those of the authors and should not be interpreted as necessarily representing official National Park Service policies.  相似文献   
24.
A second derivative spectrometer custom fitted with a 1 m stainless steel White cell and maintained at 105°C is used to make real-time measurements of volatilized NH3 from urea-amended soil. Comparison of the technique to impinger data shows a 5–16% discrepancy between the two techniques; however, other experiments presented suggests that this is not real. Sulfur dioxide and nitrous oxide interferences are discussed, though they were not found to be present in this study. Instrument response time is shown to be fast if 67% of the total response is achieved in less than 5 min. Fast response is achieved for ammonia if wall-adsorption effects are minimal and if ammonia mass flow is maintained at 0.2 μg min-1.  相似文献   
25.
26.
This paper describes four global-change phenomena that are having major impacts on Amazonian forests. The first is accelerating deforestation and logging. Despite recent government initiatives to slow forest loss, deforestation rates in Brazilian Amazonia have increased from 1.1 million ha yr–1 in the early 1990s, to nearly 1.5 million ha yr–1 from 1992–1994, and to more than 1.9 million ha yr–1 from 1995–1998. Deforestation is also occurring rapidly in some other parts of the Amazon Basin, such as in Bolivia and Ecuador, while industrialized logging is increasing dramatically in the Guianas and central Amazonia.The second phenomenon is that patterns of forest loss and fragmentation are rapidly changing. In recent decades, large-scale deforestation has mainly occurred in the southern and eastern portions of the Amazon — in the Brazilian states of Pará, Maranho, Rondônia, Acre, and Mato Grosso, and in northern Bolivia. While rates of forest loss remain very high in these areas, the development of major new highways is providing direct conduits into the heart of the Amazon. If future trends follow past patterns, land-hungry settlers and loggers may largely bisect the forests of the Amazon Basin.The third phenomenon is that climatic variability is interacting with human land uses, creating additional impacts on forest ecosystems. The 1997/98 El Niño drought, for example, led to a major increase in forest burning, with wildfires raging out of control in the northern Amazonian state of Roraima and other locations. Logging operations, which create labyrinths of roads and tracks in forsts, are increasing fuel loads, desiccation and ignition sources in forest interiors. Forest fragmentation also increases fire susceptibility by creating dry, fire-prone forest edges.Finally, recent evidence suggests that intact Amazonian forests are a globally significant carbon sink, quite possibly caused by higher forest growth rates in response to increasing atmospheric CO2 fertilization. Evidence for a carbon sink comes from long-term forest mensuration plots, from whole-forest studies of carbon flux and from investigations of atmospheric CO2 and oxygen isotopes. Unfortunately, intact Amazonian forests are rapidly diminishing. Hence, not only is the destruction of these forests a major source of greenhouse gases, but it is reducing their intrinsic capacity to help buffer the rapid anthropogenic rise in CO2.  相似文献   
27.
Estimation of benthic macroinvertebrate populations over large spatial scales is difficult due to the high variability in abundance and the cost of sample processing and taxonomic analysis. To determine a cost-effective, statistically powerful sample design, we conducted an exploratory study of the spatial variation of benthic macroinvertebrates in a 37 km reach of the Upper Mississippi River. We sampled benthos at 36 sites within each of two strata, contiguous backwater and channel border. Three standard ponar (525 cm2) grab samples were obtained at each site ('Original Design'). Analysis of variance and sampling cost of strata-wide estimates for abundance of Oligochaeta, Chironomidae, and total invertebrates showed that only one ponar sample per site ('Reduced Design') yielded essentially the same abundance estimates as the Original Design, while reducing the overall cost by 63%. A posteriori statistical power analysis ( = 0.05, = 0.20) on the Reduced Design estimated that at least 18 sites per stratum were needed to detect differences in mean abundance between contiguous backwater and channel border areas for Oligochaeta, Chironomidae, and total invertebrates. Statistical power was nearly identical for the three taxonomic groups. The abundances of several taxa of concern (e.g., Hexagenia mayflies and Musculium fingernail clams) were too spatially variable to estimate power with our method. Resampling simulations indicated that to achieve adequate sampling precision for Oligochaeta, at least 36 sample sites per stratum would be required, whereas a sampling precision of 0.2 would not be attained with any sample size for Hexagenia in channel border areas, or Chironomidae and Musculium in both strata given the variance structure of the original samples. Community-wide diversity indices (Brillouin and 1-Simpsons) increased as sample area per site increased. The backwater area had higher diversity than the channel border area. The number of sampling sites required to sample benthic macroinvertebrates during our sampling period depended on the study objective and ranged from 18 to more than 40 sites per stratum. No single sampling regime would efficiently and adequately sample all components of the macroinvertebrate community.  相似文献   
28.
Arsenobetaine, two arsenosugars, dimethylarsinate and several unidentified arsenic species were detected in extracts of the haemolymph of the Dungeness crab, Cancer magister, by using HPLC-ICP-MS. This is the first report of the presence of arsenosugars in the haemolymph/blood of marine animals. Total, extractable and residual arsenic concentrations were determined by ICP-MS. The concentration of total arsenic was in the range of 1.4-3.8 [micro sign]g ml(-1). Nearly all (98%) the arsenic was found to be extractable, and accounted for primarily by arsenobetaine, two arsenosugars and dimethylarsinate. The results demonstrate that arsenic compounds present in the diet of crabs are not fully metabolized in the gut. They are, at least partly, taken up into the haemolymph. The concurrence of arsenobetaine and arsenosugars suggests that the use of repeated haemolymph sampling in crustaceans could facilitate investigations into the kinetics of the biotransformation pathways of arsenic compounds. Finally, the present study clearly demonstrates the unique capabilities of HPLC-ICP-MS for the detection and identification of minor arsenic components amongst the predominant arsenobetaine.  相似文献   
29.
Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity and ozone concentration. Linearity of samples with loading was examined both for a constant concentration with time varied up to 24 h and for different concentrations over 24 h. Reverse diffusion and its increase with accumulation of sample were determined for all compounds. Tubes were examined for blank levels, change of blanks with storage time, and variability of blanks. Method detection limits were determined based on seven replicate samples. Based on this evaluation, 27 VOCs were selected for quantitative monitoring in the concentration range from approximately 0.1 to 4 ppbv. Comparison results of active and diffusive samples taken over 24 h and under the same simulated ambient conditions at a constant 2 ppbv were interpreted to estimate the effective diffusive sampling rates (ml min(-1)) and their uncertainties and to calculate the corresponding diffusive uptake rates (ng ppmv(-1) min(-1)).  相似文献   
30.
In order to investigate the characteristic of optical properties of Asian dust particles, the atmospheric aerosol vertical profile was measured with the multi-wavelength LIDAR system, at the Gosan super site (33 degrees 17'N, 126 degrees 10'E) in Jeju Island, Korea, during the ACE-Asia intensive observation period, 11 March-4 May 2001. An air mass backward trajectory analysis, using Hysplit-4, was carried out to track the aerosol plume, with high mass loading, from the Chinese desert regions during the period of Asian dust storm events. Vertical atmospheric aerosol profiles on three major Asian dust storm event days, 22 March and 13 and 26 April 2001, have been analyzed. The LIDAR-derived aerosol optical depth values were compared with those measured by a collocated sunphotometer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号