首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4059篇
  免费   65篇
  国内免费   98篇
安全科学   176篇
废物处理   281篇
环保管理   916篇
综合类   307篇
基础理论   785篇
环境理论   3篇
污染及防治   1256篇
评价与监测   326篇
社会与环境   138篇
灾害及防治   34篇
  2023年   34篇
  2022年   61篇
  2021年   58篇
  2020年   38篇
  2019年   55篇
  2018年   78篇
  2017年   92篇
  2016年   131篇
  2015年   84篇
  2014年   110篇
  2013年   449篇
  2012年   182篇
  2011年   214篇
  2010年   190篇
  2009年   175篇
  2008年   222篇
  2007年   212篇
  2006年   217篇
  2005年   183篇
  2004年   147篇
  2003年   151篇
  2002年   146篇
  2001年   74篇
  2000年   61篇
  1999年   41篇
  1998年   54篇
  1997年   40篇
  1996年   39篇
  1995年   37篇
  1994年   31篇
  1993年   30篇
  1992年   29篇
  1991年   31篇
  1990年   29篇
  1989年   28篇
  1988年   31篇
  1987年   23篇
  1986年   25篇
  1985年   25篇
  1984年   43篇
  1983年   37篇
  1982年   38篇
  1981年   40篇
  1980年   28篇
  1979年   43篇
  1978年   28篇
  1977年   24篇
  1976年   19篇
  1971年   12篇
  1970年   9篇
排序方式: 共有4222条查询结果,搜索用时 31 毫秒
81.
Pathogens exert a strong selection pressure on organisms to evolve effective immune defences. In addition to individual immunity, social organisms can act cooperatively to produce collective defences. In many ant species, queens have the option to found a colony alone or in groups with other, often unrelated, conspecifics. These associations are transient, usually lasting only as long as each queen benefits from the presence of others. In fact, once the first workers emerge, queens fight to the death for dominance. One potential advantage of co-founding may be that queens benefit from collective disease defences, such as mutual grooming, that act against common soil pathogens. We test this hypothesis by exposing single and co-founding queens to a fungal parasite, in order to assess whether queens in co-founding associations have improved survival. Surprisingly, co-foundresses exposed to the entomopathogenic fungus Metarhizium did not engage in cooperative disease defences, and consequently, we find no direct benefit of multiple queens on survival. However, an indirect benefit was observed, with parasite-exposed queens producing more brood when they co-founded, than when they were alone. We suggest this is due to a trade-off between reproduction and immunity. Additionally, we report an extraordinary ability of the queens to tolerate an infection for long periods after parasite exposure. Our study suggests that there are no social immunity benefits for co-founding ant queens, but that in parasite-rich environments, the presence of additional queens may nevertheless improve the chances of colony founding success.  相似文献   
82.
This study aimed to investigate the wear of certain coated drills when drilling carbon fiber reinforced composites (CFRP). Three different drills were used in the drilling experiments: uncoated, diamond coated and AlTiN coated carbide (WC–Co) drills. The tool wear in CFRP machining was quite different from that in conventional metal machining. The primary wear type was a dulling or blunting of the cutting edge, which has been referred to as edge rounding wear or edge recession. In this paper, a hypothesis has been developed to explain the edge rounding wear in CFRP machining. Due to the fracture-based chip formation of CFRP, there is lack of the work material stagnation zone in front of the cutting edge, which normally prevents the edge wear in metal machining. Series of wear lead to rapid dulling of the cutting edge. The resistance to edge rounding wear on the coated as well as uncoated drills has been investigated. The diamond coating significantly reduces the edge rounding wear. However, AlTiN coated drills showed no visible improvement over the uncoated carbide drill, despite of their high hardness, thus not protecting the drill. The wear mechanisms of the uncoated carbide drill and coatings are discussed. It is believed that the 2-body and 3-body abrasive wear fail to explain the observed tool wear in CFRP drilling. However, the wear of the coatings and uncoated carbide substrate from tribo-meter tests correlated well with the tool wear in the CFRP drilling. Therefore, the tribo-meter test can be used to screen the prospective tool materials before carrying drilling experiment.  相似文献   
83.
RT-PCR, nucleotide sequencing, and phylogenetic analysis were performed for genotyping and molecular characterization of noroviruses isolated from Korean groundwater. Among 160 samples collected from 80 sites between 2008 and 2010, 14 samples (8.7?%) from 12 sites were positive for noroviruses (NoVs). The percentages of NoV-positive samples in 2008, 2009, and 2010 were 22.2, 3.2, and 0?%, respectively, representing a yearly decrease. GII-positive samples (n?=?9, 5.6?%) outnumbered GI-positive samples (n?=?5, 3.1?%). The genotypes of the GI NoVs were GI.2, GI.5, and GI.6, and the genotypes of the GII NoVs were all GII.4. One sample, HM623465, was very similar to CUK-3 and CBNU2 and two GII.4 sequences isolated from the stool of Korean gastroenteritis patients. A BLASTN search revealed several nucleotide sequences highly similar to those of NoVs isolated in this study. The original isolation sources for these similar NoVs were mostly stool (n?=?731, 80.0?%) and groundwater (n?=?135, 14.8?%), and all the countries from which they were isolated were almost in Asia (96.0?%); specifically, China (n?=?192, 21.0?%), Japan (n?=?383, 41.9?%), Korea (n?=?296, 32.4?%), and other Asian countries (n?=?6, 0.7?%). These results suggest that Korean groundwater might be contaminated with NoVs from the stool of infected patients and that these NoVs in turn cause new cases of gastroenteritis through a typical fecal-oral route with region-specific circulation. Therefore, it is important to properly treat sewage, which may include waterborne viruses and manage point sources in groundwater for national health and sanitation. In addition, continuous molecular surveillance remains important for understanding circulating NoVs.  相似文献   
84.
Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter- current flow operation of FO membrane process.  相似文献   
85.
The nitrogen changes and the nitrogen mass balance in a free water surface flow constructed wetland (CW) using the four-year monitoring data from 2008 to 2012 were estimated. The CW was composed of six cells in series that include the first settling basin (Cell 1), aeration pond (Cell 2), deep marsh (Cell 3), shallow marsh (Cell 4), deep marsh (Cell 5) and final settling basin (Cell 6). Analysis revealed that the NH4+-N concentration decreased because of ammonification which was then followed by nitrification. The NO4+-N and NO4+-N were also further reduced by means of microbial activities and plant uptake during photosynthesis. The average nitrogen concentration at the influent was 37,819 kg/year and approximately 45% of that amount exited the CW in the effluent. The denitrification amounted to 34% of the net nitrogen input, whereas the accretion of sediment was only 7%. The biomass uptake of plants was able to retain only 1% of total nitrogen load. In order to improve the nutrient removal by plant uptake, plant coverage in four cells (i.e., Cells 1, 3, 4 and 5) could be increased.  相似文献   
86.
The method of single-strand conformational polymorphism (SSCP) was modified in our laboratories for the characterization of baculoviruses, insect viruses with great potential for use as bioinsecticides in biological protection programs. A series of primers were synthesized after the comparison of the polyhedrin gene sequences of over 20 baculoviruses. Polyhedrin is a highly conserved protein which is responsible for the persistence of the virus in the environment. Universal primers were designed which could be used in polymerase chain reactions (PCR) containing genomic DNA from an array of nucleopolyhedrosis viruses (NPVs) including these which are used as biopesticides against important pests of forests and crops, such as Anticarsia gemmatalis, Spodoptera frugiperda, Lymantria dispar, Lymantria monacha and many others. PCR products were denatured and subjected to single-strand DNA electrophoresis at variable temperatures (MSSCP) where, after silver staining, they gave ssDNA band patterns characteristic for each baculovirus species. This technique can be potentially applied to detect baculoviruses in insects collected in the field, as well as to plant tissues and the excrements or bodies of predators without need for sequencing the PCR products. Sometimes MSSCP can be used not only for species determination but also as an indication of genomic variability which can be related to infectivity.  相似文献   
87.
As of December 2006, the American Meteorological Society/U.S. Environmental Protection Agency (EPA) Regulatory Model with Plume Rise Model Enhancements (AERMOD-PRIME; hereafter AERMOD) replaced the Industrial Source Complex Short Term Version 3 (ISCST3) as the EPA-preferred regulatory model. The change from ISCST3 to AERMOD will affect Prevention of Significant Deterioration (PSD) increment consumption as well as permit compliance in states where regulatory agencies limit property line concentrations using modeling analysis. Because of differences in model formulation and the treatment of terrain features, one cannot predict a priori whether ISCST3 or AERMOD will predict higher or lower pollutant concentrations downwind of a source. The objectives of this paper were to determine the sensitivity of AERMOD to various inputs and compare the highest downwind concentrations from a ground-level area source (GLAS) predicted by AERMOD to those predicted by ISCST3. Concentrations predicted using ISCST3 were sensitive to changes in wind speed, temperature, solar radiation (as it affects stability class), and mixing heights below 160 m. Surface roughness also affected downwind concentrations predicted by ISCST3. AERMOD was sensitive to changes in albedo, surface roughness, wind speed, temperature, and cloud cover. Bowen ratio did not affect the results from AERMOD. These results demonstrate AERMOD's sensitivity to small changes in wind speed and surface roughness. When AERMOD is used to determine property line concentrations, small changes in these variables may affect the distance within which concentration limits are exceeded by several hundred meters.  相似文献   
88.
Ammonia (NH3) fluxes from waste treatment lagoons and barns at two conventional swine farms in eastern North Carolina were measured. The waste treatment lagoon data were analyzed to elucidate the temporal (seasonal and diurnal) variability and to derive regression relationships between NH3 flux and lagoon temperature, pH and ammonium content of the lagoon, and the most relevant meteorological parameters. NH3 fluxes were measured at various sampling locations on the lagoons by a flowthrough dynamic chamber system interfaced to an environmentally controlled mobile laboratory. Two sets of open-path Fourier transform infrared (FTIR) spectrometers were also used to measure NH3 concentrations for estimating NH3 emissions from the animal housing units (barns) at the lagoon and spray technology (LST) sites. Two different types of ventilation systems were used at the two farms. Moore farm used fan ventilation, and Stokes farm used natural ventilation. The early fall and winter season intensive measurement campaigns were conducted during September 9 to October 11, 2002 (lagoon temperature ranged from 21.2 to 33.6 degrees C) and January 6 to February 2, 2003 (lagoon temperature ranged from 1.7 to 12 degrees C), respectively. Significant differences in seasonal NH3 fluxes from the waste treatment lagoons were found at both farms. Typical diurnal variation of NH3 flux with its maximum value in the afternoon was observed during both experimental periods. Exponentially increasing flux with increasing surface lagoon temperature was observed, and a linear regression relationship between logarithm of NH3 flux and lagoon surface temperature (T1) was obtained. Correlations between lagoon NH3 flux and chemical parameters, such as pH, total Kjeldahl nitrogen (TKN), and total ammoniacal nitrogen (TAN) were found to be statistically insignificant or weak. In addition to lagoon surface temperature, the difference (D) between air temperature and the lagoon surface temperature was also found to influence the NH3 flux, especially when D > 0 (i.e., air hotter than lagoon). This hot-air effect is included in the statistical-observational model obtained in this study, which was used further in the companion study (Part II), to compare the emissions from potential environmental superior technologies to evaluate the effectiveness of each technology.  相似文献   
89.
Isolating the effects of an individual emissions source on secondary air pollutants such as ozone and some components of particulate matter must incorporate complex nonlinear processes, be sensitive to small emissions perturbations, and account for impacts that may occur hundreds of kilometers away. The ability to evaluate these impacts is becoming increasingly important for efficient air quality management. Here, as part of a recent compliance enforcement action for a violation of the Clean Air Act and as an evaluation of ozone response to single-source emissions plumes, two three-dimensional regional photochemical air quality models are used to assess the impact on ozone from approximately 2000 to 3000 excess t/month of nitrogen oxides emitted from a single power plant in Ohio. Periods in May, July, and August are evaluated. Two sensitivity methods are applied: the "brute-force" (B-F) method and the decoupled direct method (DDM). Using DDM, maximum 1-hr averaged ozone concentrations are found to increase by up to 1.8, 1.3, and 2.2 ppbv during May, July, and August episodes, respectively, and concentration increases greater than 0.5 ppbv occur in Ohio, Pennsylvania, Maryland, New York, West Virginia, Virginia, and North and South Carolina. B-F results for the August episode show a maximum 1-hr averaged ozone concentration increase of 2.3 ppbv. Significant localized decreases are also simulated, with a maximum of 3.6 ppbv in Ohio during the August episode and decreases of 0.50 ppbv and greater in Ohio, Pennsylvania, Maryland, West Virginia, and Virginia. Maximum increases are compared with maximum decreases for the August period using second-order DDM and are found, in aggregate, to be greater in magnitude by 42%. When evaluated during hours when ozone concentrations exceed 0.060 ppm, the maximum increases in ozone are higher than decreases by 82%. The spatial extent of ozone increase in both cases is about triple that of reduction.  相似文献   
90.
To identify major PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) sources with a particular emphasis on the ship engine emissions from a major port, integrated 24 h PM2.5 speciation data collected between 2000 and 2005 at five United State Environmental Protection Agency's Speciation Trends Network monitoring sites in Seattle, WA were analyzed. Seven to ten PM2.5 sources were identified through the application of positive matrix factorization (PMF). Secondary particles (12–26% for secondary nitrate; 17–20% for secondary sulfate) and gasoline vehicle emissions (13–31%) made the largest contributions to the PM2.5 mass concentrations at all of the monitoring sites except for the residential Lake Forest site, where wood smoke contributed the most PM2.5 mass (31%). Other identified sources include diesel vehicle emissions, airborne soil, residual oil combustion, sea salt, aged sea salt, metal processing, and cement kiln. Residual oil combustion sources identified at multiple monitoring sites point clearly to the Port of Seattle suggesting ship emissions as the source of oil combustion particles. In addition, the relationship between sulfate concentrations and the oil combustion emissions indicated contributions of ship emissions to the local sulfate concentrations. The analysis of spatial variability of PM2.5 sources shows that the spatial distributions of several PM2.5 sources were heterogeneous within a given air shed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号