首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   1篇
  国内免费   22篇
安全科学   35篇
废物处理   16篇
环保管理   18篇
综合类   51篇
基础理论   47篇
污染及防治   78篇
评价与监测   27篇
社会与环境   14篇
灾害及防治   2篇
  2023年   4篇
  2022年   10篇
  2021年   9篇
  2020年   1篇
  2019年   10篇
  2018年   3篇
  2017年   5篇
  2016年   17篇
  2015年   15篇
  2014年   8篇
  2013年   22篇
  2012年   19篇
  2011年   14篇
  2010年   14篇
  2009年   18篇
  2008年   20篇
  2007年   14篇
  2006年   16篇
  2005年   11篇
  2004年   6篇
  2003年   15篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有288条查询结果,搜索用时 15 毫秒
51.
Agarwal A  Ng WJ  Liu Y 《Chemosphere》2011,84(9):1175-1180
In recent years, microbubble and nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology, such as water treatment, biomedical engineering, and nanomaterials. In this paper, we discuss the physics, methods of generation of microbubbles (MBs) and nanobubbles (NBs), while production of free radicals from MBs and NBs are reviewed with the focuses on degradation of toxic compounds, water disinfection, and cleaning/defouling of solid surfaces including membrane. Due to their ability to produce free radicals, it can be expected that the future prospects of MBs and NBs will be immense and yet more to be explored.  相似文献   
52.
Uptake, accumulation and translocation of caffeine by Scirpus validus grown in hydroponic condition were investigated. The plants were cultivated in Hoagland’s nutrient solution spiked with caffeine at concentrations of 0.5–2.0 mg L?1. The effect of photodegradation on caffeine elimination was determined in dark controls and proved to be negligible. Removal of caffeine in mesocosms without plants showed however that biodegradation could account for about 15–19% of the caffeine lost from solutions after 3 and 7 d. Plant uptake played a significant role in caffeine elimination. Caffeine was detected in both roots and shoots of S. validus. Root concentrations of caffeine were 0.1–6.1 μg g?1, while the concentrations for shoots were 6.4–13.7 μg g?1. A significant (p < 0.05) positive correlation between the concentration in the root and the initial concentrations in the nutrient solution was observed. The bioaccumulation factors (BAFs) of caffeine for roots ranged from 0.2 to 3.1, while BAFs for shoots ranged from 3.2 to 16.9. Translocation from roots to shoots was the major pathway of shoot accumulation. The fraction of caffeine in the roots as a percentage of the total caffeine mass in solution was limited to 0.2–4.4% throughout the whole experiment, while shoot uptake percentage ranged from 12% to 25% for caffeine at the initial concentration of 2.0 mg L?1 to 50–62% for caffeine at the initial concentration of 0.5 mg L?1. However, a marked decrease in the concentration of caffeine in the shoots between d-14 and d-21 suggests that caffeine may have been catabolized in the plant tissues subsequent to plant uptake and translocation.  相似文献   
53.
54.
This study meta‐analyzed the relationships between locus of control (LOC) and a wide range of work outcomes. We categorized these outcomes according to three theoretical perspectives: LOC and well‐being, LOC and motivation, and LOC and behavioral orientation. Hypotheses reflecting these three perspectives were proposed and tested. It was found that internal locus was positively associated with favorable work outcomes, such as positive task and social experiences, and greater job motivation. Our findings are discussed in relation to research on core self‐evaluation and the Big Five personality traits. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
55.
In this work, a novel approach is proposed for expressing the risks of process plants consisting of a large number of scenarios, in the form of a risk metrics of leading indicators to prevent potential high profile industry accidents. The methodology includes: 1) risk estimation of a portfolio by CPQRA (or QRA), 2) monetization of the tangible risks with the inclusion of the lost time of production, 3) estimation of the maximum portfolio loss using Value-at-Risk approach, 4) inclusion of intangible risks using FN-curve and, 5) generation of F$-curve of tangible risks. The proposed methodology can particularly help in understanding the stakes at risk by performing the overall cost-benefit analysis, for identifying the most risky scenarios and identifying critical equipments to enable better risk-informed decision making in order to adopt appropriate risk mitigation measures. This work establishes the groundwork for developing measures for understanding and comparing the large number of risk values derived from QRA studies for large portfolios. It will aid in less subjective decision making as it enables the decision maker to choose the most preferred portfolio option among alternatives. Decisions made with the accurate understanding of the consequences of risks can significantly reduce potential work-related fatalities, property losses and save millions of dollars.  相似文献   
56.
A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial com- munity dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens.  相似文献   
57.
We characterize the monthly variation in (1 → 3)-β-d-glucan concentration measured over the course of 1 year, and we evaluate the characteristics of size selection using a two-stage cyclone sampler. The (1 → 3)-β-d-glucan concentrations were measured in four bio-related laboratories. A total of 156 samples were collected using a new two-stage cyclone sampler. Analysis of (1 → 3)-β-d-glucan was performed using the kinetic Limulus amebocyte lysate assay. The study showed that airborne (1 → 3)-β-d-glucan concentrations were significantly higher in laboratory D (mean ± SD 1,105?±?1,893 pg/m3) and in the spring (5,458 pg/m3). The highest concentration of (1 → 3)-β-d-glucan occurred in the spring, particularly in May.  相似文献   
58.
Monitoring of Phenol in Wastewater Bioremediation by HPLC   总被引:1,自引:0,他引:1  
Bioremediation emphasizes the detoxification and destruction of toxic substances by microorganisms. Wastewater obtained from an industrial concern was solvent extracted with methyl alcohol and dichloromethane and analysed by GC/MS. Besides phenol, a large variety of organic compounds were detected. Under controlled laboratory conditions, the wastewater was innoculated with a mixed culture of microorganisms specially selected for their abilities to degrade phenol. Samples were collected at regular intervals from the stirred tank bioreactor and analysed for phenol by reverse phase HPLC with a C18 column. Results shows that from an initial phenol concentration of 987 ppm, slightly more than 50% was destroyed within 163 hours. The dry weight of the microorganisms and the plate count (CFU/ml) shows a steady increase from 0.5238 gms to 0.5355 gms and from 1.1E+9 to 1.94E+13 respectively over the same period. This suggested that the phenol was consumed by the microorganisms as the sole carbon source.  相似文献   
59.
Disinfection By-Products in Water Produced by Ozonation and Chlorination   总被引:6,自引:0,他引:6  
Water produced by advanced treatment of a groundwater was evaluated to determine the amount of DBPs (Disinfection By-Products) including trihalomethanes (THMs). Both Gas Chromatography (GC) and Gas Chromatography/Mass Spectrometry (GS/MS) were adopted for detection and identification of DBPs such as trihalomethanes (THMs), halo-acetic acids (HAAs) and aldehydes. Two disinfection modes (ozonation followed by chlorination and chlorination alone) were compared to determine the DBPs generation. The mutagenitic acivity of ozonated water, chlorinated water after ozonation and potable water was assessed using the Ames test. Chloroform, dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were the main constituents of THMs and HAAs, respectively. THMs accounted for more than 85% of all DBPs measured, whereas haloacetic acids accounted for around 14%. Ozonation followed by chlorination proved to be better in terms of THMs and HAAs control. The combined system produced 28.3% less DBPs compared to chlorination alone. Ozonation was found capable of reducing mutagenic matter in the groundwater by 54.7%. The combined system also resulted in water with no mutagenicity.  相似文献   
60.
Journal of Material Cycles and Waste Management - Municipal solid waste (MSW) landfills are the third largest source of global methane emissions as biogas (11%). In developing countries, MSW...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号