首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6409篇
  免费   371篇
  国内免费   2210篇
安全科学   498篇
废物处理   329篇
环保管理   477篇
综合类   3635篇
基础理论   1079篇
污染及防治   2061篇
评价与监测   302篇
社会与环境   330篇
灾害及防治   279篇
  2024年   11篇
  2023年   102篇
  2022年   337篇
  2021年   277篇
  2020年   233篇
  2019年   198篇
  2018年   265篇
  2017年   299篇
  2016年   289篇
  2015年   347篇
  2014年   527篇
  2013年   638篇
  2012年   520篇
  2011年   568篇
  2010年   407篇
  2009年   408篇
  2008年   427篇
  2007年   383篇
  2006年   384篇
  2005年   259篇
  2004年   217篇
  2003年   203篇
  2002年   252篇
  2001年   220篇
  2000年   198篇
  1999年   164篇
  1998年   179篇
  1997年   131篇
  1996年   122篇
  1995年   89篇
  1994年   80篇
  1993年   63篇
  1992年   58篇
  1991年   32篇
  1990年   38篇
  1989年   12篇
  1988年   9篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有8990条查询结果,搜索用时 46 毫秒
961.
检测细胞DNA断裂损伤效应的彗星实验法的改良   总被引:1,自引:0,他引:1  
为了解决彗星实验过程中常出现的脱胶、细胞核分离操作繁琐、重复性低等问题,对彗星实验方法进行了改良,初步建立了彗星实验的快速操作流程。结果显示,通过对载玻片进行预处理,可确保凝胶悬挂均匀;采用改良机械法分离的细胞核浓度适中;以0.5%(w/v)涂层琼脂糖作为基层、以1.5%(w/v)低熔点包埋琼脂糖作为叠加层的"双层凝胶法",辅以"推片法"铺胶,操作便捷且不发生脱胶现象;细胞核膜经裂解处理后再进行电泳和荧光观察,彗星图像清晰,杂质少。应用改良后的彗星实验方法,操作简便,耗时更短,实验效果良好,可快速检测出细胞DNA损伤效应。  相似文献   
962.
空气污染是一个全球性的问题,并且具有深远的环境影响。暴露于空气污染会对人体健康产生许多不同的影响,理解空气污染的健康效应又是一个复杂命题,既要考虑不同类型的污染物同时也要考虑相关疾病的复杂性。然而越来越多的研究表明,表观遗传学在空气污染相关疾病的发生、发展中发挥着重要的作用。空气污染物可引起DNA甲基化、组蛋白修饰和miRNA表达等表观遗传学改变,这种改变往往发生在疾病产生的早期,因此相关研究不仅可以了解疾病的发病机制,而且还为疾病早期诊断和预防筛选可能的标志物。本文综述了表观遗传学的几种修饰方式和空气污染物造成不良健康损伤机制的一些研究进展。  相似文献   
963.
水电站的大量兴建导致下游河道萎缩退化甚至断流,如何改变水电站运行调度方式,维持下游河道一定的生态流量、保障河流健康成为国内外普遍关注的问题.本文在传统水文学方法的基础上融入生物栖息地法思想,以河流生态系统的生物多样性为功能目标,用河道流量反映河流的水文过程,河道水域面积反映河流生态系统的生物多样性,创新性地提出考虑河道水文生态特性的生态流量定值方法——水域面积法.以北江上游浈江二级支流罗坝水为例进行分析计算.计算结果表明:枯水年罗坝水生态流量为2.26 m3·s-1,占多年平均流量的25.97%;平水年生态流量分月控制,生态流量过程与建站前流量过程基本一致.根据枯水年的生态流量值和平水年各月份的生态流量值,结合水电站的运行调度规则,换算成一定时期内的径流量来确定该时期内水电站需释放的水量,进而对水电站下游河道的生态功能进行保护和修复.  相似文献   
964.
Excessive nitrogen (N) and phosphorus (P) loading of aquatic ecosystems is a leading cause of eutrophication and harmful algal blooms worldwide, and reducing nutrient levels in water has been a primary management objective. To provide a rational protection strategy and predict future trends of eutrophication in eutrophic lakes, we need to understand the relationships between nutrient ratios and nutrient limitations. We conducted a set of outdoor bioassays at the shore of Lake Taihu. It showed that N only additions induced phytoplankton growth but adding only P did not. Combined N plus P additions promoted higher phytoplankton biomass than N only additions, which suggested that both N and P were deficient for maximum phytoplankton growth in this lake (TN:TP = 18.9). When nutrients are present at less than 7.75-13.95 mg/L TN and 0.41-0.74 mg/L TP, the deficiency of either N or P or both limits the growth of phytoplankton. N limitation then takes place when the TN:TP ratio is less than 21.5-24.7 (TDN:TDP was 34.2-44.3), and P limitation occurs above this. Therefore, according to this ratio, controlling N when N limitation exists and controlling P when P deficiency is present will prevent algal blooms effectively in the short term. But for the long term, a persistent dual nutrient (N and P) management strategy is necessary.  相似文献   
965.
Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria (PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+ under the light-anaerobic condition. Results showed that with the optimal Mg2+ dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L, and biomass yield also was improved by 60%. Chemical Oxygen Demand (COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2+ could promote the content of bacteriochlorophyll in photosynthesis because Mg2+ is the bacteriochlorophyll active center, and thus improved adenosine triphosphate (ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials (biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2+, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively.  相似文献   
966.
Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the community composition of AMF under natural conditions in soils contaminated by antimony (Sb). The objective of this study was to investigate the characteristics of AMF molecular diversity, and to explore the effects of Sb content and soil properties on the AMF community structure in an Sb mining area. Four Sb mine spoils and one adjacent reference area were selected from around the Xikuangshan mine in southern China. The association of AMF molecular diversity and community composition with the rhizosphere soils of the dominant plant species was studied by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Results from all five studied sites showed that the diversity of AMF decreased with increasing Sb concentration. Principal component analysis (PCA) indicated that the AMF community structure was markedly different among these groups. Further redundancy analysis (RDA) showed that Sb contaminationwas the dominating factor influencing the AMF community structure in the Sb mine area. However, the multivariate analysis showed that, apart from the soil Sb content, extractable nitrogen content and organic matter content also attributed to AMF sequence distribution type. Some AMF sequences were only found in the highly contaminated area and these might be ideal candidates for improving phytoremediation efficiency in Sb mining regions. Gene sequencing analysis revealed that most species were affiliated with Glomus, suggesting that Glomus was the dominant AMF genus in the studied Sb mining area.  相似文献   
967.
The technique of DGT (diffusive gradients in thin films) using three diffusive gel thicknesses was applied to estimate the mobility and bioavailability of heavy metals in sediments and porewater of Lake Taihu, China. The DGT results showed significantly positive correlations between Co, Pb, Cd and Mn, and Ni and Fe concentrations in porewater. Cu and Zn showed a significantly negative correlation with Mn, due to Cu combination with carbonates and Zn derived from agricultural pollution, respectively. The rank order of average concentrations of Co, Ni and Cd at each station was DGT1.92 > DGT0.78 > DGT0.39, suggesting stronger resupply from sediments to porewater when using thicker diffusive gels. Comparing centrifugation and DGT measurements, Co, Ni and Cd are highly labile; Mn and Fe are moderately labile; and Cu, Zn and Pb are slightly labile. The variations of AVS concentrations in sediment cores indicate that metal sulfides in deeper layers are easily diffused into surface sediments.  相似文献   
968.
The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output, surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from 1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields. Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by 16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010, partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk, decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields.  相似文献   
969.
Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca–Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca–Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid–liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca–Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca–Mg/biochar were in the order of Ca–Mg/B600 > Ca–Mg/B450 > Ca–Mg/B300. Results revealed that postsorption Ca–Mg/biochar can continually release P and is more suitable for an acid environment.  相似文献   
970.
An activation process for developing the surface and porous structure of palygorskite/carbon(PG/C) nanocomposite using ZnC l2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), field-emission scanning electron microscopy(SEM), and Brunauer–Emmett–Teller analysis(BET) techniques. The effects of activation conditions were examined,including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of C_C and C–H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold(1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号