首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2486篇
  免费   413篇
  国内免费   817篇
安全科学   533篇
废物处理   33篇
环保管理   232篇
综合类   1975篇
基础理论   370篇
污染及防治   58篇
评价与监测   182篇
社会与环境   195篇
灾害及防治   138篇
  2024年   30篇
  2023年   85篇
  2022年   194篇
  2021年   164篇
  2020年   205篇
  2019年   127篇
  2018年   129篇
  2017年   126篇
  2016年   122篇
  2015年   167篇
  2014年   162篇
  2013年   190篇
  2012年   276篇
  2011年   226篇
  2010年   205篇
  2009年   217篇
  2008年   179篇
  2007年   214篇
  2006年   162篇
  2005年   125篇
  2004年   115篇
  2003年   74篇
  2002年   71篇
  2001年   57篇
  2000年   50篇
  1999年   31篇
  1998年   5篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
排序方式: 共有3716条查询结果,搜索用时 234 毫秒
201.
CMT监测井在黑河流域地下水监测中的应用   总被引:3,自引:0,他引:3  
以CMT监测井在黑河流域的应用为基础,通过对监测数据和采集的水样进行分析,了解了黑河流域地下水水位动态变化,掌握了黑河流域地下水水化学垂向分布规律,为合理利用黑河流域水资源提供了科学依据。  相似文献   
202.
张掖地区造纸厂废水灌溉区域微型生物调查研究   总被引:1,自引:0,他引:1  
通过对造纸废水流经灌区不同点进行微型生物监测 ,从微型生物的指示性角度出发 ,来说明造纸废水水质污染状况。通过监测得知 ,废水灌区微型生物共有 3 8种。其中藻类 1 0种 ,原生动物 2 8种。 3 8种微型生物均属多污性、α-中污性或 β-中污性种类 ,说明造纸废水治理效果较差且对灌区农作物及生态污染较严重。如何解决废水污染及灌区对废水的依赖性 ,应引起有关部门的重视。  相似文献   
203.
胭脂红酸分光光度法测定废水中硼   总被引:5,自引:0,他引:5  
用胭脂红酸分光光度法测定废水中的硼,着重进行了方法的条件和干扰试验。方法检测限为0.063mg/L,线性范围为0.21mg/L-1.25mg/L。5个实验室对5.00mg/L硼标准样品测得重复性相对标准差为3.4%,再次性相对标准差为3.6%;相对误差为-0.8%-1.4%,回收率在95.2%-104.6%之间。  相似文献   
204.
南京市冬季大气颗粒态汞的分布特征   总被引:2,自引:0,他引:2  
采集了南京市2012年冬季4个功能区的PM2.5、PM10、TSP样品,对不同粒径大气颗粒物中的颗粒态汞测试。结果表明,南京冬季大气颗粒物TSP中汞的质量浓度为49.26 pg/m3~257.14 pg/m3,平均质量浓度为161.27 pg/m3;PM10中汞的质量浓度为44.82 pg/m3~228.29 pg/m3,平均质量浓度为147.38 pg/m3;PM2.5中汞的质量浓度为35.98 pg/m3~178.58 pg/m3,平均质量浓度为104.10 pg/m3。不同功能区大气颗粒态汞质量浓度的分布趋势为:交通综合区>旅游区>住宿综合区>商业区。大气颗粒态汞60%以上存在于可吸入肺的PM2.5中,细颗粒物富集汞的能力比粗颗粒物强。  相似文献   
205.
以氯甲基聚苯乙烯树脂(CMPS)为前体,经后交联反应合成超高交联树脂(J-2),再经硫脲胺基改性得到硫脲修饰超高交联聚苯乙烯树脂(TU-PS).通过BET、FTIR等对树脂结构进行表征,并考察了pH、吸附温度、接触时间等因素对TU-PS改性树脂吸附Cr(Ⅵ)性能的影响.结果表明,改性树脂(TU-PS)对Cr(Ⅵ)吸附的最佳条件为:Cr(Ⅵ)初始浓度为500 mg·L-1、初始pH值为2、树脂用量为2.5 g·L-1、吸附温度为45℃、吸附时间为6 h.在此最佳条件下,TU-PS树脂对Cr(Ⅵ)的最大吸附量为140.00 mg·g-1,去除率为70.18%.吸附过程符合Langmuir等温吸附模型和准二级动力学模型,吸附过程以单分子层化学吸附为主.TU-PS树脂对Cr(Ⅵ)的吸附是静电吸附和化学吸附共同作用的结果.  相似文献   
206.
新能源汽车替代传统燃油车是减缓能源与环境压力并如期实现“双碳”目标的重要途径,但在重型车辆、工程车等领域推广较为缓慢.深圳市自2019年开始推广使用纯电动泥头车,并计划到2025年新能源环卫、泥头车数量达到8000辆.为深入探究纯电动泥头车替代柴油泥头车所产生的减污降碳协同效益,本研究基于一手调研数据,采用生命周期评价方法并结合GREET模型,对比分析了两类泥头车在燃料周期、车辆周期和配套设施周期3个周期内的能耗、主要空气污染物及碳排放情况.结果表明,纯电动泥头车全生命周期内能耗较柴油泥头车可减少36.2%,主要污染物如NOx、SO2、VOC和PM2.5降幅分别达81.3%、37.8%、29.0%和25.9%;温室气体(GHGs)排放强度减少14.4%,基准情境下2030年和2050年推广纯电动泥头车GHGs累计减排量分别为71.4万t和258.5万t.尽管节能减排效果显著,但其初始购置和售后维保成本过高是制约其推广的最主要因素,通过降低车辆及电池生产制造成本、提高充换电设施数量及售后维保能力等有望加快泥头车纯电动化.  相似文献   
207.
以宣城市南漪湖为例,采用改进的无机磷分级提取方法对全湖共39个点位沉积物中磷(P)赋存形态进行系统研究,并分析其与上覆水体、间隙水等相互关系.结果表明,南漪湖水体磷污染水平已经处于高位,沉积物间隙水磷与上覆水体磷空间分布特征具有密切关系.南漪湖沉积物中总磷(TP)含量变化范围为463.3~1016.6mg/kg,其中各形态磷空间分布具有明显的差异性,与外源磷输入等密切相关.赋存形态含量大小、相对比例顺序依次为:钙结合态磷(Ca-P)>铁结合态磷(Fe-P)>铝结合态磷(Al-P)>还原剂可溶性磷(RS-P)>残渣态磷(Res-P)>弱吸附态磷(L-P).沉积物中TP含量与Fe-P、RS-P、Res-P极显著正相关,与L-P含量显著正相关.外源磷输入和水产养殖对南漪湖沉积物内源磷中Fe-P和RS-P贡献可能较大.南漪湖沉积物内源磷对上覆水体的潜在风险较高,其中生物有效性较高的L-P、Al-P、Fe-P和Rs-P的总和相对比例可达60%左右.沉积物中磷形态与间隙水磷浓度关系较密切,其中Al-P、Ca-P对间隙水中磷迁移转化具有重要影响.南漪湖主要出入湖河口沉积...  相似文献   
208.
三峡大坝每年周期性“蓄水-放水”,形成水位落差巨大的消落带,库区内污染物环境地球化学行为随之发生变化.以冬季淹没期消落带多环芳烃为研究对象,采集成对大气(n=16)、植物(n=12)和土壤样品(n=12),采用气相色谱/质谱法(GC/MS),分析USEPA 16PAHs浓度水平,解析来源,估算大气地表、大气-植物等多介质交换通量.结果表明:大气、土壤和植物中PAHs浓度为5.65~13.47ng/m3、70.86~13 5.44ng/g和78.23~1084.72ng/g,平均值分别为(8.58±2.78) ng/m3、(90.10±22.18) ng/g和(360.36±309.54) ng/g.大气中PAHs以2~3环为主(62.3%),植物中PAHs以3~4环为主(73.7%),土壤中PAHs以3环和5环为主(52.1%).特征分子比值法揭示煤、生物质燃烧是植物PAHs的主要来源,以石油为主的化石燃料燃烧是大气和土壤PAHs主要来源.“一室模型”表明,植物吸收PAHs的主要途径为植物-气相之间动态平衡限制下的气沉降.“逸度模型”表明,3...  相似文献   
209.
分析云南山区公路严峻的交通形势,及山区公路交通事故的特征、事故形态及影响因素,研究山区公路交通事故发生的机理。从人、车、路和环境等方面分析事故产生的原因,提出针对云南山区事故多发路段安全对策措施。分析表明,在云南山区,路况、人员安全素质、车辆性能、安全管理均处于较低水平,是重大事故多发的根本原因。提高系统安全性,实现系统功能最强,应使系统各要素相互匹配,以实现本质安全。  相似文献   
210.
石油类突发水污染事故应急处理技术研究进展   总被引:3,自引:0,他引:3  
从事故原因、应急处理措施、处理结果等几方面总结了国内外发生的主要石油类突发水污染事故,综述了机械回收、原地焚烧、投加消油剂、生物修复等应对石油类水污染事故的主要应急处理技术.通过对比分析,得出它们的优缺点和适用场景.其中,机械回收中围栏法和吸附法应用研究较多;原地焚烧具有简单、快速与高效等特点;喷洒消油剂适应恶劣天气与大面积处理;而生物修复则具有成本低,无二次污染等优势.分析认为,复杂多变的事故场景决定了应急技术应是一个综合技术系统,通过构建油类突发水污染事故模拟平台,验证深化现有技术,强化现有单项技术的集成是未来的发展方向和重点.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号