收费全文 | 833篇 |
免费 | 133篇 |
国内免费 | 291篇 |
安全科学 | 128篇 |
废物处理 | 12篇 |
环保管理 | 73篇 |
综合类 | 689篇 |
基础理论 | 109篇 |
污染及防治 | 59篇 |
评价与监测 | 43篇 |
社会与环境 | 97篇 |
灾害及防治 | 47篇 |
2024年 | 15篇 |
2023年 | 33篇 |
2022年 | 84篇 |
2021年 | 88篇 |
2020年 | 78篇 |
2019年 | 54篇 |
2018年 | 49篇 |
2017年 | 54篇 |
2016年 | 51篇 |
2015年 | 48篇 |
2014年 | 60篇 |
2013年 | 72篇 |
2012年 | 64篇 |
2011年 | 65篇 |
2010年 | 63篇 |
2009年 | 54篇 |
2008年 | 51篇 |
2007年 | 54篇 |
2006年 | 61篇 |
2005年 | 43篇 |
2004年 | 29篇 |
2003年 | 30篇 |
2002年 | 20篇 |
2001年 | 12篇 |
2000年 | 15篇 |
1999年 | 6篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
为研究嘉兴市大气PM2.5中金属元素的污染特征、生态风险和污染来源,使用嘉兴市善西超级站的24 h在线监测数据,对2019年3月1日—2020年2月29日嘉兴市大气PM2.5和其中12种金属元素(K、Ca、Fe、Zn、Mn、Cd、Pb、Cr、Ni、Ba、Cu、V)进行分析。结果表明:观测期间嘉兴市PM2.5平均浓度为30.94 μg/m3,优于GB 3095—2012《环境空气质量标准》二级标准(35 μg/m3),PM2.5浓度季节分布为冬季>春季>秋季>夏季。金属元素总浓度为1.36 μg/m3,从高到低分别为K>Fe>Zn>Ca>Mn>Pb>Ba>Cu>Cr>Ni>Cd>V,其中Fe、Zn浓度的变化受到新型冠状病毒感染疫情暴发和春节的影响。随着大气污染程度的加重,PM2.5中金属元素总浓度和各金属元素浓度都呈上升趋势,但大多数金属元素在PM2.5中的占比呈下降趋势。富集因子法表明,K、Ca、Fe、Ba、V不存在富集,Zn、Cd存在极重富集。地累积指数结果显示,Cu、Pb、Zn、Cd受到人为源的影响较大。由金属元素的生态风险指数可知,Mn、Cr、Ni存在轻微潜在生态风险,Zn、Cu、Pb、Cd的生态风险较大。通过主成分分析得出,嘉兴市PM2.5中金属元素主要来自工业源、燃煤源、交通源和自然源。
相似文献以国内某大型电解铝企业为例,针对氟化物产生的重点环节进行分析测试,通过物质流分析方法构建电解铝企业氟平衡,研究电解铝生产过程中特征污染物氟化物的分布特征。结果表明:除电解槽大修渣外,无组织烟气以及炭渣是电解铝生产过程中氟化物排放的关键环节,其中无组织烟气中氟化物含量折合单位产品排放量为0.374 kg/t (以Al质量计,全文同),约为有组织排放量的3.7倍;炭渣中氟化物含量为6.347 kg/t,约为大修渣中氟化物含量的2.7倍。为了加强电解铝行业氟化物风险防控,建议从生产全过程入手,通过提高电解槽的集气效率以及科学控制排烟量的方法有效控制无组织排放,优化电解槽排烟管道以提高有组织烟气治理的效率,控制原料含水量从源头减少氟化物的产生,强化含氟固体废物管控,以期减少电解铝企业对周边环境造成的氟污染。
相似文献以太湖蓝藻为原料制备不同种类的活性生物炭,并将其投入到生物电化学系统(BES)的阴极促进氢自养反硝化。通过扫描电镜、能谱仪和傅里叶红外光谱对未经改性(ABC-800)、硝酸改性(ABC-800N)和KOH改性(ABC-800K)3组蓝藻生物炭进行观察,并与不加入蓝藻生物炭的对照组进行比较,以考察生物炭促进BES生物阴极的反硝化过程中的电子传递机制。结果表明:ABC-800N表面的N、O元素含量最高,同时与电子传递能力及生物相容性相关的共轭醌、酮结构的丰度也最高;将蓝藻生物炭投加至BES的非生物阴极中可提高阴极的脱氮效率,ABC-800N投加量为0.5 g时,7 d内脱氮效率达到最高,为96.0%,而对照组仅为29.6%;高通量测序表明,ABC-800N组的优势菌属为