首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1726篇
  免费   124篇
  国内免费   317篇
安全科学   200篇
废物处理   61篇
环保管理   154篇
综合类   918篇
基础理论   289篇
污染及防治   307篇
评价与监测   73篇
社会与环境   109篇
灾害及防治   56篇
  2024年   1篇
  2023年   16篇
  2022年   56篇
  2021年   60篇
  2020年   55篇
  2019年   51篇
  2018年   55篇
  2017年   52篇
  2016年   51篇
  2015年   88篇
  2014年   94篇
  2013年   131篇
  2012年   121篇
  2011年   161篇
  2010年   125篇
  2009年   118篇
  2008年   134篇
  2007年   138篇
  2006年   135篇
  2005年   110篇
  2004年   74篇
  2003年   68篇
  2002年   58篇
  2001年   50篇
  2000年   35篇
  1999年   32篇
  1998年   17篇
  1997年   15篇
  1996年   13篇
  1995年   15篇
  1994年   8篇
  1993年   14篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
排序方式: 共有2167条查询结果,搜索用时 156 毫秒
771.
山地城市合流污水特细砂粒径特征及分布   总被引:1,自引:1,他引:0  
对山地城市合流污水特细砂粒径特征参数及分布研究的结果表明,晴、雨天合流污水细砂平均粒径D(3,4)均小于250μm,且含量高,属于特细砂;新旧城区排水体制、山地地貌、降雨强度、雨前晴天数、用地性质、水土流失等因素均会对山地城市合流污水特细砂粒径特征和分布等造成影响。涪陵污水处理厂进水含砂量高达183.9 mg/L,平均粒径为182.6μm,粒径偏小,超出沉砂池有效去除范围;大量特细砂进入曝气池后,堵塞管道、磨损设备等,给污水处理厂运行带来一系列不利影响。  相似文献   
772.
磷酸活化-微波热解法制备污泥吸附剂   总被引:1,自引:1,他引:0  
以污泥吸附剂的碘值和其对铬的吸附去除效果为考察指标,对制备污泥吸附剂的各种影响因素进行全面考察和分析。结果表明,其最佳制备工艺条件为微波功率550 W,微波辐照时间330 s,磷酸浓度为40%及磷酸与污泥原料的液固比为2∶1,空气氛围中制备的吸附剂SAA的性能要稍优于氮气氛围中制备的吸附剂SAN,但前者的得率稍低于后者,总体来讲,两者相差不大。在实际应用中可简化制备工艺,无需通入保护气体。  相似文献   
773.
利用离子液体1-己基-3-甲基咪唑六氟磷酸盐萃取模拟废水中的醋酸丁酯。萃取液经减压蒸馏回收醋酸丁酯,离子液体也得到再生。实验结果表明:萃取率随废水与离子液体体积之比(相比)的增加而减小,随萃取时间的延长而增大,随萃取温度的升高而增大;在相比为6∶1、萃取时间为40min、萃取温度为50℃的条件下,萃取率达98.98%,醋酸丁酯纯度达99.8%;回收后离子液体可重复使用且萃取率基本不变。  相似文献   
774.
碳源对铜绿微囊藻生理特性及微囊藻毒素产率的影响   总被引:2,自引:0,他引:2  
为研究水体中不同碳源对铜绿微囊藻生理特性的影响,以Na2CO3与葡萄糖分别作为铜绿微囊藻生长的无机碳源与有机碳源,将铜绿微囊藻于光照下进行培养,并对其一系列的生理特性与微囊藻毒素产率进行检测。实验结果表明,同等碳浓度下,有机碳源更能促进铜绿微囊藻的生长,经过30 d的培养,铜绿微囊藻在有机碳源中的产量为187.55 g,比其在无机碳源中的产量提高了6.06%;微囊藻毒素在有机碳源中的产量为969.00μg/g,而在无机碳源中的产量却升高至1 193.60μg/g。参与藻毒素合成的3种氨基酸在无机碳源中的浓度要比有机碳源中的浓度高,但是其余几种氨基酸的含量与之情况相反。而有机碳源培养的铜绿微囊藻总可溶性蛋白含量为387.00μg/g,比无机碳源培养的铜绿微囊藻的蛋白含量提高了93.60%。  相似文献   
775.
A new method for the degradation of bisphenol A (BPA) in aqueous solution was developed. The oxidative degradation characteristics of BPA in a heterogeneous Fenton reaction catalyzed by Fe3O4/graphite oxide (GO) were studied. Transmission electron microscopic images showed that the Fe3O4 nanoparticles were evenly distributed and were ~6 nm in diameter. Experimental results suggested that BPA conversion was affected by several factors, such as the loading amount of Fe3O4/GO, pH, and initial H2O2 concentration. In the system with 1.0 g L?1 of Fe3O4/GO and 20 mmol L?1 of H2O2, almost 90 % of BPA (20 mg L?1) was degraded within 6 h at pH 6.0. Based on the degradation products identified by GC–MS, the degradation pathways of BPA were proposed. In addition, the reused catalyst Fe3O4/GO still retained its catalytic activity after three cycles, indicating that Fe3O4/GO had good stability and reusability. These results demonstrated that the heterogeneous Fenton reaction catalyzed by Fe3O4/GO is a promising advanced oxidation technology for the treatment of wastewater containing BPA.  相似文献   
776.
The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34–58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3–4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting.  相似文献   
777.
Traditional combustion of syngas derived from biomass has incurred numerous environmental problems, and syngas chemical looping combustion is environmentally friendly for syngas energy conversion. As a key part of chemical looping combustion, reactor configuration is noticeable. The dynamically operated packed bed reactor is an emerging conception applied to chemical looping combustion. Our attention is paid to the conversion of the oxygen carrier in the packed bed as the limited maximum conversion of the oxygen carrier in a packed bed is unclear. In this paper, the reaction front distribution during iron oxide reduced by CO is firstly proposed on the basis of chemical equilibrium and then validated by the effluent gas profile. Based on the reaction front distribution, the detail of the reduction stage in iron-based chemical looping combustion is analyzed to obtain the characteristics of reaction fronts. The reaction rates of reduction from Fe2O3 to Fe3O4, Fe3O4 to Fe0.947O and Fe0.947O to Fe are 5.280, 3.329 and 4.379 mol m?3 s?1, respectively. And the velocities of reaction front I, II, III are 0.605, 0.326, 0.044 cm min?1, respectively, which demonstrate the reaction front distribution. The methodology established in this paper can be used to study multiple reaction front system in the packed bed reactor.  相似文献   
778.
Environmental pollutants polychlorinated biphenyls (PCBs), especially dioxin-like PCBs, cause oxidative stress and associated toxic effects, including cancer and possibly atherosclerosis. We previously reported that PCB 126, the most potent dioxin-like PCB congener, not only decreases antioxidants such as hepatic selenium (Se), Se-dependent glutathione peroxidase, and glutathione (GSH) but also increases levels of the antiatherosclerosis enzyme paraoxonase 1 (PON1) in liver and serum. To probe the interconnection of these three antioxidant systems, Se, GSH, and PON1, we examined the influence of varying levels of dietary Se and N-acetylcysteine (NAC), a scavenger of reactive oxygen species (ROS) and precursor for GSH synthesis, on PON1 in the absence and presence of PCB 126 exposure. Male Sprague–Dawley rats, fed diets with differing Se levels (0.02, 0.2, or 2 ppm) or NAC (1 %), were treated with a single intraperitoneal injection of corn oil or various doses of PCB 126 and euthanized 2 weeks later. PCB 126 significantly increased liver PON1 mRNA, protein level and activity, and serum PON1 activity in all dietary groups but did not consistently increase thiobarbituric acid levels (thiobarbituric acid reactive substances, TBARS), an indicator of lipid oxidation and oxidative stress, in liver or serum. Inadequate (high or low) dietary Se decreased baseline and PCB 126-induced aryl hydrocarbon receptor (AhR) expression but further increased PCB 126-induced cytochrome P450 1A1 (CYP1A1) expression, the enzyme believed to be the cause for PCB 126-induced oxidative stress. In addition, a significant inverse relationship was observed not only between dietary Se levels and PON1 mRNA and PON1 activity but also with TBARS levels in the liver, suggesting significant antioxidant protection from dietary Se. NAC lowered serum baseline TBARS levels in controls and increased serum PON1 activity but lowered liver PON1 activities in animals treated with 1 μmol/kg PCB 126, suggesting antioxidant activity by NAC primarily in serum. These results also show an unexpected predominantly inverse relationship between Se or NAC and PON1 during control and PCB 126 exposure conditions. These interactions should be further explored in the development of dietary protection regimens.  相似文献   
779.
According to the data from authoritative sources, 1,400 sudden leakage accidents occurred in China during 2006 to 2011 were investigated, in which, 666 accidents were used for statistical characteristic abstracted with no or little damage. The research results were as follows: (1) Time fluctuation: the yearly number of sudden leakage accidents is shown to be decreasing from 2006 to 2010, and a slightly increase in 2011. Sudden leakage accidents occur mainly in summer, and more than half of the accidents occur from May to September. (2) Regional distribution: the accidents are highly concentrated in the coastal area, in which accidents result from small and medium-sized enterprises more easily than that of the larger ones. (3) Pollutants: hazardous chemicals are up to 95 % of sudden leakage accidents. (4) Steps: transportation represents almost half of the accidents, followed by production, usage, storage, and discard. (5) Pollution and casualties: it is easy to cause environmental pollution and casualties. (6) Causes: more than half of the cases were caused by human factor, followed by management reason, and equipment failure. However, sudden chemical leakage may also be caused by high temperature, rain, wet road, and terrain. (7) The results of principal component analysis: five factors are extracted by the principal component analysis, including pollution, casualties, regional distribution, steps, and month. According to the analysis of the accident, the characteristics, causes, and damages of the sudden leakage accident will be investigated. Therefore, advices for prevention and rescue should be acquired.  相似文献   
780.
Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)–CaCl2 (300 mg/L) coprecipitation agent could remove more than 93 % arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH–NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号