首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10674篇
  免费   571篇
  国内免费   4028篇
安全科学   777篇
废物处理   699篇
环保管理   779篇
综合类   6213篇
基础理论   1784篇
环境理论   3篇
污染及防治   3684篇
评价与监测   419篇
社会与环境   347篇
灾害及防治   568篇
  2024年   14篇
  2023年   185篇
  2022年   504篇
  2021年   453篇
  2020年   353篇
  2019年   311篇
  2018年   387篇
  2017年   504篇
  2016年   477篇
  2015年   618篇
  2014年   779篇
  2013年   1109篇
  2012年   884篇
  2011年   904篇
  2010年   743篇
  2009年   710篇
  2008年   746篇
  2007年   626篇
  2006年   576篇
  2005年   423篇
  2004年   305篇
  2003年   376篇
  2002年   383篇
  2001年   299篇
  2000年   317篇
  1999年   351篇
  1998年   322篇
  1997年   274篇
  1996年   256篇
  1995年   274篇
  1994年   197篇
  1993年   168篇
  1992年   141篇
  1991年   96篇
  1990年   66篇
  1989年   33篇
  1988年   31篇
  1987年   14篇
  1986年   18篇
  1985年   9篇
  1984年   11篇
  1983年   8篇
  1982年   12篇
  1981年   5篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
膜生物反应器处理微污染水源水的研究与应用现状   总被引:2,自引:0,他引:2  
膜生物反应器及其组合工艺能实现水源水中微污染物的有效去除,是一种新型高效水处理工艺.总结了膜生物反应器处理微污染水源水的研究与应用现状、污染物去除效果和机制;在分析膜污染机制基础上归纳了膜污染控制和污染膜清洗方式,展望了膜生物反应器在给水领域应用需克服解决的技术难点.  相似文献   
912.
Ag/Cu合金触点废料回收铜粉的工艺研究   总被引:1,自引:0,他引:1  
Ag/Cu合金触点废料含Ag量在30%(质量分数)以上,含Cu量在60%(质量分数)以上、含Sn量在2%(质量分数)以上.先将Ag/Cu合金触点废料中的Cu分离,然后采用葡萄糖预还原、水合肼再还原制得了粒径在0.3~O.6 pm的类球形超细铜粉(纯度≥99.9%).研究表明,适量聚乙烯吡咯烷酮(PVP)的加入有助于超细铜粉粒径均匀且形貌趋于一致;量佳反应温度为70℃;抗氧化剂苯并三氮唑可以有效防止超细铜粉的表面氧化.  相似文献   
913.
污染物负荷对曝气生物滤池处理效果的影响研究   总被引:1,自引:0,他引:1  
考察了进水有机负荷和氨氮负荷对曝气生物滤池出水水质的影响.结果表明,系统COD、氨氮和TN的去除率随进水有机负荷的增加而下降,在氨氮为28.3~33.6 mg/L、TN为39.0~45.8 mg/L条件下,有机负荷小于3.53 kg/(ms3·d)时,出水COD、氨氮和TN分别小于50、5、15 mg/L,去除率分别在85%、85%和65%以上;氨氮和TN的去除率随氨氮负荷的增加而下降,在COD为287.6~313.4 mg/L、氨氮负荷小于0.56 kg/(m3·d)时,出水氨氮小于8 mg/L,去除率在85%以上,出水TN小于15mg/L,去除率在65%以上.  相似文献   
914.
湘江霞湾港段底泥的含镉量分布研究   总被引:2,自引:0,他引:2  
为了研究湘江霞湾港段底泥中镉的含量分布和释放特性,对该河段底泥采样以测定含镉量,并采用Tessier连续提取法对镉形态进行分析测定.结果表明,湘江霞湾港段受到严重的镉污染,其底泥含镉量最高达359.8μg/g.湘江底泥和间隙水中含镉量的吸附-解吸平衡可采用Freundlich吸附等温式描述.对新霞湾和老霞湾排污口附近河流底泥的镉形态分析表明,镉污染物以有机质-硫化物结合态为主,分别占总量的73.3%(质量分数,下同)、65.3%,其次是残渣晶格结合态,分别占总量的26.5%、34.4%.  相似文献   
915.
Knowledge on atmospheric abundance of peroxyacetyl nitrate (PAN) is important in assessing the severity of photochemical pollution, and for understanding chemical transformation of reactive odd nitrogen and its impact on the budget of tropospheric ozone (O3). In summer 2006, continuous measurements of PAN were made using an automatic GC–ECD analyzer with an on-line calibrator at a suburban site of Lanzhou (LZ) and a remote site of Mt. Waliguan (WLG) in western China, with concurrent measurements of O3, total reactive nitrogen (NOy) and carbon monoxide (CO). At LZ, several photochemical episodes were observed during the study, and the average mixing ratio of PAN (plus or minus standard deviation) was 0.76 (±0.89) ppbv with the maximum value of 9.13 ppbv, compared to an average value of 0.44 (±0.16) ppbv at remote WLG. The PAN mixing ratios in LZ exhibited strong diurnal variations with a maximum at noon, while enhanced concentrations of PAN were observed in the evening and a minimum in the afternoon at WLG. The daily O3 and PAN concentration maxima showed a strong correlation (r2 = 0.91) in LZ, with a regression slope (PAN/O3) of 0.091 ppbv ppbv?1. At WLG, six well-identified pollution plumes (lasting 2–8 h) were observed with elevated concentrations of PAN (and other trace gases), and analysis of backward particle release simulation shows that the high-PAN events at WLG were mostly associated with the transport of air masses that had passed over LZ.  相似文献   
916.
Measurement of ambient gas-phase total peroxides was performed at the summit of Mount Tai (Mt. Tai, 1534 m above sea level) in central-eastern China during March 22–April 24 and June 16–July 20, 2007. The hourly averaged concentration of peroxides was 0.17 ppbv (± 0.16 ppbv, maximum: 1.28 ppbv) and 0.55 ppbv (± 0.67 ppbv, maximum: 3.55 ppbv) in the spring and summer campaigns, respectively. The average concentration of peroxides at Mt. Tai, which is in a heavily polluted region, was much lower than hydrogen peroxide measurements made at some rural mountain sites, suggesting that significant removal processes took place in this region. An examination of diurnal variation and a correlation analysis suggest that these removal processes could include chemical suppression of peroxide production due to the scavenging of peroxy and hydroxy radicals by high NOx, wet removal by clouds/fogs rich in dissolved sulfur dioxide which reacts quickly with peroxides, and photolysis. These sinks competed with photochemical sources of peroxides, resulting in different mean concentrations and diurnal pattern of peroxides in the spring and summer. A principal component analysis was conducted to quantify the major processes that influenced the variation of peroxide concentrations. This analysis shows that in the spring photochemical production was an important source of peroxides, and the major sink was scavenging during upslope transport of polluted and humid air from the lower part of the planetary boundary layer (PBL) and wet removal by synoptic scale clouds. During the summer, highly polluted PBL air (with high NOx) was often associated with very low peroxides due to the chemical suppression of HO2 by high NOx and wet-removal by clouds/fogs in this sulfur-rich atmosphere, especially during the daytime. Higher concentrations of peroxides, which often appeared at mid-nighttime, were mainly associated with subsidence of air masses containing relatively lower concentrations of NOy.  相似文献   
917.
We have carried out kinetic studies to characterize the heterogeneous decay of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in the presence of representative mineral dust aerosol in order to obtain a better understanding of the atmospheric fate of these siloxanes. The heterogeneous chemistry of D4 and D5 with various mineral dusts was studied in an environmental aerosol reaction chamber using FTIR absorption spectroscopy to monitor the reaction. The apparent heterogeneous uptake coefficient, γapp, for D4 and D5 with various mineral dusts was measured under dry conditions and as a function of relative humidity (RH). In addition, the effect of initial D4 and D5 concentration on the rate and yield of the reaction was examined. The uptake coefficient, γapp, for D4 and D5 was similar for the most reactive aerosols tested, with kaolinite ≈hematite > silica. Limited uptake onto carbon black and calcite surfaces was observed for either siloxane. Reaction with hematite and kaolinite resulted in multilayer coverages, suggesting extensive polymerization of D4 and D5 on the aerosol surface.  相似文献   
918.
Using a dynamic numerical atmospheric transport model for organochlorine pesticides (OCPs), the relationship between the East Asian summer monsoon and the fate of α-hexachlorocyclohexane (α-HCH), a banned OCP, in the atmosphere over Northeast Asia was investigated and assessed. The modeled temporal and spatial patterns and variability of α-HCH air concentrations during the summer months of 2005 revealed a strong link between this chemical in the atmosphere over Northeast Asia and the East Asian summer monsoon. At lower atmospheric levels, easterly and southeasterly winds blowing from relatively cold ocean surface convey α-HCH air concentration from southeast China to northeast China. A monsoon front extending from southeast China to Japan, characterized by a strong wind convergence, carried the air concentration to a high elevation of the atmosphere where it was delivered by southerly monsoon flow to northern China and North Pacific Ocean. This summer monsoon associated northward atmospheric transport caused a reversal of the soil/air exchange from outgassing to net deposition during spring–summer period. The modeled wet deposition fluxes of α-HCH agreed well with the changes in the typical summer monsoon rain bands, designated as Meiyu in China, Changma in Korea, and Baiu in Japan. The major wet deposition flux paralleled with the monsoon front as well as the monsoon rain bands. The temporal change in the fluxes exhibits abrupt northward advances, which is associated with a stepwise northward and northeastward advance of the East Asian summer monsoon. The modeled α-HCH outflow in the atmosphere from China occurs mostly in the summer months and through northeast China, featured strongly by the evolution of the summer month. This study suggests that the East Asian summer monsoon provides a major atmospheric pathway and summer outflows to α-HCH over East Asia.  相似文献   
919.
Carbonaceous aerosol concentrations were determined for total suspended particle samples collected from Muztagh Ata Mountain in western China from December 2003 to February 2006. Elemental carbon (EC) varied from 0.004 to 0.174 μg m?3 (average = 0.055 μg m?3) while organic carbon (OC) ranged from 0.12 to 2.17 μg m?3 and carbonate carbon (CC) from below detection to 3.57 μg m?3. Overall, EC was the least abundant fraction of carbonaceous species, and the EC concentrations approached those in some remote polar areas, possibly representing a regional background. Low EC and OC concentrations occurred in winter and spring while high CC in spring and summer was presumably due to dust from the Taklimakan desert, China. OC/EC ratios averaged 10.0, and strong correlations between OC and EC in spring–winter suggest their cycles are coupled, but lower correlations in summer–autumn suggest influences from biogenic OC emissions and secondary OC formation. Trajectory analyses indicate that air transported from outside of China brings ~0.05 μg m?3 EC, ~0.42 μg m?3 OC, and ~0.10 μg m?3 CC to the site, with higher levels coming from inside China. The observed EC was within the range of loadings estimated from a glacial ice core, and implications of EC-induced warming for regional climate and glacial ice dynamics are discussed.  相似文献   
920.
Gas/particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air was investigated in a satellite town in Eastern China from April 2007 to January 2008 comprehending large temperature variations (from 3 to 34 °C, daily average). Molecular weight, molecular structure and ambient temperatures are the three major factors that govern the gas/particle partitioning of atmospheric PCDD/Fs throughout the year. Generally, good agreements were obtained (except for winter) between measured particulate fractions and theoretical estimates of both the Junge–Pankow adsorption model and Harner Bidleman absorption model using different sets of subcooled liquid vapor pressure and octanol–air partition coefficient (Koa), respectively. Models utilizing estimates, derived from gas chromatographic retention indices (GC-RIs), are more accurate than that of entropy-based. Moreover, during winter, the Koa-based model using the GC-RIs approach performs better on lower chlorinated PCDD/Fs than that of -based. Furthermore, possible sources of mismatch between measured and predicted values in winter (3–7 °C) were discussed. Gas adsorption artifact was demonstrated to be of minor importance for the phenomena observed. On the other hand, large deviations of slopes (mr) and intercepts (br) in logKp vs. plots from theoretical values are observed in the literature data and these are found to be linearly correlated with ambient temperatures (P<0.001) in this study. This indicates that the non-equilibrium partitioning of PCDD/Fs in winter may be significantly influenced by the colder temperatures that may have slowed down the exchange between gaseous and particulate fractions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号