首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17026篇
  免费   131篇
  国内免费   313篇
安全科学   426篇
废物处理   752篇
环保管理   1809篇
综合类   3735篇
基础理论   4004篇
环境理论   8篇
污染及防治   4464篇
评价与监测   1296篇
社会与环境   894篇
灾害及防治   82篇
  2022年   192篇
  2021年   139篇
  2020年   99篇
  2019年   131篇
  2018年   300篇
  2017年   245篇
  2016年   368篇
  2015年   298篇
  2014年   478篇
  2013年   1246篇
  2012年   521篇
  2011年   721篇
  2010年   582篇
  2009年   641篇
  2008年   692篇
  2007年   722篇
  2006年   651篇
  2005年   589篇
  2004年   555篇
  2003年   558篇
  2002年   520篇
  2001年   786篇
  2000年   489篇
  1999年   315篇
  1998年   178篇
  1997年   203篇
  1996年   197篇
  1995年   224篇
  1994年   209篇
  1993年   167篇
  1992年   190篇
  1991年   192篇
  1990年   191篇
  1989年   167篇
  1988年   169篇
  1987年   109篇
  1986年   142篇
  1985年   139篇
  1984年   138篇
  1983年   132篇
  1982年   137篇
  1981年   135篇
  1980年   98篇
  1979年   108篇
  1978年   112篇
  1976年   98篇
  1974年   109篇
  1972年   96篇
  1967年   101篇
  1964年   95篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
301.
The hydroxyl radical (*OH) is generated in polluted dew on the needle surfaces of Japanese red pine (Pinus densiflora Sieb. et Zucc.). This free radical, which is a potent oxidant, is assumed to be a cause of ecophysiological disorders of declining trees on the urban-facing side of Mt. Gokurakuji, western Japan. Mists of *OH-generating N(III) (HNO2 and NO2-) and HOOH + Fe + oxalate solutions (50 and 100 microM, pH 5.1-5.4) simulating the dew water were applied to the foliage of pine seedlings grown in open-top chambers in the early morning. Needles treated with 100 microM N(III) tended to have a greater maximum CO2 assimilation rate (Amax), a greater stomatal conductance (g(s)) and a greater needle nitrogen content (Nneedle), suggesting that N(III) mist acts as a fertilizer rather than as a phytotoxin. On the other hand, needles treated with 100 microM HOOH + Fe + oxalate solution showed the smallest Amax, g(s), and Nneedle, suggesting that the combination of HOOH + Fe + oxalate caused a decrease in needle productivity. The effects of HOOH + Fe + oxalate mist on pine needles were very similar to the symptoms of declining trees at Mt. Gokurakuji.  相似文献   
302.
Composite ZnO/SnO2 catalyst has been studied for the sensitized degradation of dyes e.g. Eosin Y (2', 4', 5', 7'-tetrabromofluorescein disodium salt) in relation to efficient charge separation properties of the catalyst. Improved photocatalytic activity was observed in the case of ZnO/SnO2 composite catalyst compared to the catalytic activity of ZnO, SnO2 or TiO2 powder. The suppression of charge recombination in the composite ZnO/SnO2 catalyst led to higher catalytic activity for the degradation of Eosin Y. Degradation of Eosin follows concomitant formation of CO2 and formation of CO2 followed a pseudo-first-order rate. Photoelectrochemical cells constructed using SnO2, ZnO, ZnO/SnO2 sensitized with Eosin Y showed V(oc) of 175, 306, 512 mV/cm2 and I(sc) of 50, 70, 200 microA/cm2 respectively. A higher irreversible degradation of Eosin Y and higher V(oc) observed on composite ZnO/SnO2 than ZnO and SnO2 separately can be considered as a proof of enhanced charge separation of ZnO/SnO2 catalyst. Eosin Y showed a higher emission decreases on ZnO/SnO2 composite than on individual ZnO, SnO2 or TiO2 indicating dominance of the charge injection process. Photoinjected electrons are tunneled from ZnO to SnO2 particles accumulating injected electrons in the conduction bands allowing wider separation of excited carriers.  相似文献   
303.
Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD3, COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources.
Graphical abstract ?
  相似文献   
304.
Interdisciplinarity is needed to gain knowledge of the ecology of invasive species and invaded ecosystems, and of the human dimensions of biological invasions. We combine a quantitative literature review with a qualitative historical narrative to document the progress of interdisciplinarity in invasion science since 1950. Our review shows that 92.4% of interdisciplinary publications (out of 9192) focus on ecological questions, 4.4% on social ones, and 3.2% on socialecological ones. The emergence of invasion science out of ecology might explain why interdisciplinarity has remained mostly within the natural sciences. Nevertheless, invasion science is attracting social–ecological collaborations to understand ecological challenges, and to develop novel approaches to address new ideas, concepts, and invasion-related questions between scholars and stakeholders. We discuss ways to reframe invasion science as a field centred on interlinked social–ecological dynamics to bring science, governance and society together in a common effort to deal with invasions.  相似文献   
305.
The United States Environmental Protection Agency (USEPA) has pursued the estimation of risk of adverse health effects from exposure to chemical mixtures since the early 1980s. Methods used to calculate risk estimates of mixtures were often based on single chemical information that required assumptions of dose-addition or response-addition and did not consider possible changes in response due to interaction effects among chemicals. Full factorial designs for laboratory studies can produce interactions information, but these are expensive to perform and may not provide the information needed to evaluate specific environmentally relevant mixtures. In this research, groups of Japanese medaka (Oryzias latipes) embryos were exposed to binary mixtures of benzene and toluene as well as to each of these chemicals alone. Endpoint specific dose-response models were built for the hydrocarbon mixture under an assumption of dose-additivity, using the single chemical dose-response information on benzene and toluene. The endpoints included heart rate, heart rate progression, and lethality. Results included a synergistic response for heart rate at 72 h of development, and either additivity or antagonism for all other endpoints at 96 h of development. This work uses an established statistical method to evaluate the toxicity of an environmentally relevant mixture to ascertain whether interaction effects are occurring, thus providing additional information on toxicity.  相似文献   
306.
Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts   总被引:7,自引:0,他引:7  
Liu Y  Chen X  Li J  Burda C 《Chemosphere》2005,61(1):11-18
This study examined the photocatalytic degradation of three azo dyes, acid orange 7 (AO7), procion red MX-5B (MX-5B) and reactive black 5 (RB5) using a new type of nitrogen-doped TiO2 nanocrystals. These newly developed doped titania nanocatalysts demonstrated high reactivity under visible light (lambda>390 nm), allowing more efficient usage of solar light. The doped titania were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Experiments were conducted to compare the photocatalytic activities of nitrogen-doped TiO2 nanocatalysts and commercially available Degussa P25 powder using both UV illumination and solar light. It is shown that nitrogen-doped TiO2 after calcination had the highest photocatalytic activity among all three catalysts tested, with 95% of AO7 decolorized in 1 h under UV illumination. The doped TiO2 also exhibited substantial photocatalytic activity under direct sunlight irradiation, with 70% of the dye color removed in 1h and complete decolorization within 3 h. Degussa P25 did not cause detectable dye decolorization under identical experimental conditions using solar light. The decrease of total organic carbon (TOC) and evolution of inorganic sulfate (SO4(2-)) ions in dye solutions were measured to monitor the dye mineralization process.  相似文献   
307.
Phosphorus (P) is the limiting nutrient in freshwater primary production, and excessive levels cause premature eutrophication. P levels in aquaculture effluents are now tightly regulated. Increasing our understanding of waste P partitioning into soluble, particulate, and settleable fractions is important in the management of effluent P. When water supply is limited, dissolved oxygen concentration (DO) decreases below the optimum levels. Therefore, we studied effects of DO (6 and 10mg/L) and dietary P (0.7 and 1.0% P) on rainbow trout growth, P utilization, and effluent P partitioning. Biomass increased by 40% after 3 weeks. DO at 10mg/L significantly increased fish growth and feed efficiency, and increased the amount of P in the soluble fraction of the effluent. Soluble effluent P was greater in fish fed 1.0% P. DO increases fish growth and modulates P partitioning in aquaculture effluent.  相似文献   
308.
Stormwater runoff is now a major contributor to the pollution of coastal waters in the United States. Public agencies are responding by requiring stormwater monitoring to satisfy the National Pollutant Discharge Elimination System stormwater permit. However, studies to understand the utility of the current programs or to improve their usefulness have not yet been performed. In this paper, we evaluate the land-use-based program, the industrial stormwater permit program, and beach water-quality monitoring in the County of Los Angeles, California, to determine if the results will be helpful to planners and regulators in abating stormwater pollution. The utility of the program has been assessed based on the programs' ability to accurately estimate the emissions for different classes of land use. The land-use program appears successful, while the industrial monitoring program does not. Beach water-quality monitoring suffers from a lack of real-time monitoring techniques. We also provide suggested improvements, such as sampling method and time, and parameter selection.  相似文献   
309.
Agrawal SB  Singh A  Rathore D 《Chemosphere》2005,61(2):218-228
A field study was conducted to evaluate the suitability of ethylene diurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea; EDU) in assessing the impact of O3 on mung bean plants (Vigna radiata L. var. Malviya Jyoti) grown in suburban area of Allahabad city situated in a dry tropical region of India. EDU is a synthetic chemical having anti-ozonant property. Mean monthly O3 concentration varied between 64 and 69 microg m(-3) during the experimental period. In comparison to EDU-treated plants, non-EDU-treated plants showed significant reductions in plant growth and yield under ambient conditions. Significant favourable effects of EDU-application were observed with respect to photosynthetic pigments, soluble protein, ascorbic acid and phenol contents. EDU-treated plants maintained higher levels of pigments, protein and ascorbic acid in foliage as compared to non-EDU-treated ones. The study clearly demonstrated that EDU alleviates the unfavourable effects of O3 on mung bean plants, and therefore can be used as a tool to assess the growth and yield losses in areas having higher O3 concentrations.  相似文献   
310.
Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号