首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17758篇
  免费   958篇
  国内免费   6147篇
安全科学   1506篇
废物处理   1078篇
环保管理   1534篇
综合类   9826篇
基础理论   2891篇
环境理论   4篇
污染及防治   5830篇
评价与监测   783篇
社会与环境   669篇
灾害及防治   742篇
  2024年   33篇
  2023年   281篇
  2022年   892篇
  2021年   793篇
  2020年   687篇
  2019年   566篇
  2018年   706篇
  2017年   874篇
  2016年   796篇
  2015年   991篇
  2014年   1388篇
  2013年   1839篇
  2012年   1593篇
  2011年   1569篇
  2010年   1220篇
  2009年   1141篇
  2008年   1282篇
  2007年   1101篇
  2006年   929篇
  2005年   666篇
  2004年   534篇
  2003年   607篇
  2002年   515篇
  2001年   441篇
  2000年   461篇
  1999年   453篇
  1998年   419篇
  1997年   415篇
  1996年   389篇
  1995年   289篇
  1994年   230篇
  1993年   198篇
  1992年   154篇
  1991年   121篇
  1990年   81篇
  1989年   41篇
  1988年   37篇
  1987年   17篇
  1986年   21篇
  1985年   17篇
  1984年   18篇
  1983年   14篇
  1982年   16篇
  1981年   13篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1968年   1篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
891.
本文采用NaOH熔融法,原子吸收分光光度法和NH4OAc浸提,原子吸收分光光度法,分别测定了皇甫川流域五分地沟试验区不同植被治理措施下土壤的全K和速效K含量,对测定结果的分析表明:①不同治理措施下,土壤中全K含量的大小次序是:人工草地〉农田〉人工灌木〉退化草地〉次生草地〉人工林地〉百里香草原,土壤中速效K含量的大小次序是:人工林地〉百里香草原〉人工灌木〉退化草地〉农田〉次生草地〉人工草地。②不同治理方式对土壤钾含量提高的差异明显,灌草类植被对土壤钾的提高效果较好,杨树林对土壤钾的恢复效果稍差。  相似文献   
892.
室内空气质量问题已经成为社会各界广泛关注的问题,如何有效地控制室内污染、改善室内空气质量是目前急待解决的问题.文章介绍了室内空气污染的特点、种类和来源,以及对人体的危害,并对传统方法如污染源控制、加强通风透气、植物净化等方法进行了探讨,另外还介绍了目前几种先进的室内环境净化处理技术及各技术的优缺点,进而对室内空气净化技术的发展趋势进行了展望.  相似文献   
893.
应用加载磁絮凝技术处理垃圾渗滤液试验研究   总被引:1,自引:0,他引:1  
垃圾渗滤液是一种成分复杂多变的高浓度难处理有机废水。本研究采用加载磁絮凝技术对垃圾渗滤液进行预处理,并讨论了适宜的磁载体、凝聚剂和絮凝剂的加入量。  相似文献   
894.
建立了结构-TMD振动方程,推导了无控结构和带TMD受控结构基于功率表达的运动方程,分别解释并给出了各种功率表达参数的物理意义,推导了随机激励下结构耗能功率流均值的随机表达式,对比分析了基于功率法的结构-TMD优化方法与其他优化方法的优化分析结果,并对其减震控制效果进行了对比分析。结果表明,结构-TMD系统的参数可以通过耗能功率流随机分析方法所得均值进行优化,且通过功率法优化后,结构在减震效果上优于其他传统方法得到的结果,从耗能功率均值的随机分析和时程功率分析角度证明了TMD控制的有效性;TMD做功功率为负时对结构有控制效果,起吸收转移能量的作用,且功率幅值越大控制效果越好,做功功率为正时则相反。  相似文献   
895.
Photocatalytic ozonation of phenol and oxalic acid (OA) was conducted with a Ag^+/TiO2 catalyst and different pathways were found for the degradation of different compounds. Ag^+ greatly promoted the photocatalytic degradation of contaminants due to its role as an electron scavenger. It also accelerated the removal rate of OA in ozonation and the simultaneous process for its complex reaction with oxalate. Phenol could be degraded both in direct ozonation and photolysis, but the TOC removal rates were much higher in the simultaneous processes due to the oxidation of hydroxyl radicals resulting from synergetic effects. The sequence of photo-illumination and ozone exposure in the combined process showed quite different effects in phenol degradation and TOC removal. The synergetic effects in different combined processes were found to be highly related to the properties of the target pollutants. The color change of the solution and TEM result confirmed that Ag+ was easily reduced and deposited on the surface of Tit2 under photo-illumination, and dissolved again into solution in the presence of ozone. This simple cycle of enrichment and distribution of Ag^+ can greatly benefit the design of advanced oxidation processes, in which the sequences of ozone and photo-illumination can be varied according to the needs for catalyst recycling and the different properties of pollutants.  相似文献   
896.
Plastics such as polyvinyl chlorides (PVC) are widely used in many indoor constructed environments; however, their unbound chemicals, such as di-(2-ethylhexyl) phthalates (DEHP), can leach into the surrounding environment. This study focused on DEHP's effect on the central nervous system by determining the precise DEHP content in mice brain tissue after exposure to the chemical, to evaluate the specific exposure range. Primary neuronal-astrocyte co-culture systems were used as in vitro models for chemical hazard identification of DEHP. Oxidative stress was hypothesized as a probable mechanism involved, and therefore the total reactive oxygen species (ROS) concentration was determined as a biomarker of oxidative stress. In addition, NeuriteTracer, a neurite tracing plugin with ImageJ, was used to develop an assay for neurotoxicity to provide quantitative measurements of neurological parameters, such as neuronal number, neuron count and neurite length, all of which could indicate neurotoxic effects. The results showed that with 1 nmol/L DEHP exposure, there was a significant increase in ROS concentrations, indicating that the neuronal-astrocyte cultures were injured due to exposure to DEHP. In response, astrocyte proliferation (gliosis) was initiated, serving as a mechanism to maintain a homeostatic environment for neurons and protect neurons from toxic chemicals. There is a need to assess the cumulative effects of DEHP in animals to evaluate the possible uotake and effects on the human neuronal system from exoosure to DEHP in the indoor environment.  相似文献   
897.
Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb2+removal from the liquid phase. Of the sequestered Pb(II), 8.5% was held by physical entrapment within the cell wall, 43.3% was held by ion-exchange, 9.7% was complexed with cell surface functional groups or precipitated on the cell surface, and 38.5% was intracellularly accumulated.Complexation of Pb2+with carboxyl, hydroxyl, carbonyl, amido, and phosphate groups was demonstrated by Fourier transform infrared spectroscopic analysis. Precipitates of Pb5(PO4)3OH, Pb5(PO4)3Cl and Pb10(PO4)6(OH)2that formed on the cell surface during the biosorption process were identified by X-ray diffraction analysis. Transmission electron microscopy–energy dispersive spectroscopic analysis confirmed the presence of the Pb(II)precipitates and that Pb(II) could be sequestered both extracellularly and intracellularly.Incubation with B. subtilis DBM significantly decreased the amount of the weak-acid-soluble Pb fraction in a heavy-metal-contaminated soil, resulting in a reduction in Pb bioavailability, but increased the amount of its organic-matter-bound fraction by 71%. The ability of B.subtilis DBM to reduce the bioavailability of soil Pb makes it potentially useful for bacteria-assisted phytostabilization of multi-heavy-metal-contaminated soil.  相似文献   
898.
The brominated products, formed in chlorination treatment of benzophenone-4 in the presence of bromide ions, were identified, and the formation pathways were proposed.Under disinfection conditions, benzophenone-4 would undertake electrophilic substitution generating mono- or di-halogenated products, which would be oxidized to esters and further hydrolyzed to phenol derivatives. The generated catechol intermediate would be transformed into furan-like heterocyclic product. The product species were p H-dependent,while benzophenone-4 elimination was chlorine dose-dependent. When the chlorination treatment was performed on ambient water spiked with benzophenone-4 and bromide ions, most of brominated byproducts could be detected, and the acute toxicity significantly increased as well.  相似文献   
899.
Multi-walled carbon nanotube(MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film. The film was further coated with a natural antimicrobial peptide nisin. We studied the effects of nisin coating on the attachment of Bacillus anthracis spores, the germination of attached spores, and the subsequent biofilm formation from attached spores. It was found that the strong adsorptivity and the super hydrophobicity of MWCNTs provided an ideal platform for nisin coating. Nisin coating on MWCNT sheets decreased surface hydrophobicity, reduced spore attachment, and reduced the germination of attached spores by 3.5 fold, and further inhibited the subsequent biofilm formation by 94.6% compared to that on uncoated MWCNT sheet. Nisin also changed the morphology of vegetative cells in the formed biofilm.The results of this study demonstrated that the anti-adhesion and antimicrobial effect of nisin in combination with the physical properties of carbon nanotubes had the potential in producing effective anti-biofilm formation surfaces.  相似文献   
900.
Arbuscular mycorrhizal fungi(AMF) are important components of soil microbial communities,and play important role in plant growth. However, the effects of AMF phylogenetic groups(Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups(Glomeraceae and non-Glomeraceae) and host plant functional groups(herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size(ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels.Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号