We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials, which were formed by layered deposition of multiple anatase TiO2 nanosheets. The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet, including crystal steps and edges, thereby fixing the Au–TiO2 perimeter interface. Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au–TiO2 interface. The doped Au induced the formation of oxygen vacancies in the Au–TiO2 interface. Such vacancies are essential for generating active oxygen species (*O−) on the TiO2 surface and Ti3 + ions in bulk TiO2. These ions can then form Ti3 +–O−–Ti4 + species, which are known to enhance the catalytic activity of formaldehyde (HCHO) oxidation. These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials. 相似文献
The microbial reduction of U(VI) by Bacillus sp. dwc-2, isolated from soil in Southwest China, was explored using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). Our studies indicated that approximately 16.0% of U(VI) at an initial concentration of 100 mg/L uranium nitrate could be reduced by Bacillus sp. dwc-2 at pH 8.2 under anaerobic conditions at room temperature. Additionally, natural organic matter (NOM) played an important role in enhancing the bioreduction of U(VI) by Bacillus sp. dwc-2. XPS results demonstrated that the uranium presented mixed valence states (U(VI) and U(IV)) after bioreduction, which was subsequently confirmed by XANES. Furthermore, the TEM and high resolution transmission electron microscopy (HRTEM) analysis suggested that the reduced uranium was bioaccumulated mainly within the cell and as a crystalline structure on the cell wall. These observations implied that the reduction of uranium may have a significant effect on its fate in the soil environment in which these bacterial strains occur. 相似文献
Conflicts between local people's livelihoods and conservation have led to many unsuccessful conservation efforts and have stimulated debates on policies that might simultaneously promote sustainable management of protected areas and improve the living conditions of local people. Many government‐sponsored payments‐for‐ecosystem‐services (PES) schemes have been implemented around the world. However, few empirical assessments of their effectiveness have been conducted, and even fewer assessments have directly measured their effects on ecosystem services. We conducted an empirical and spatially explicit assessment of the conservation effectiveness of one of the world's largest PES programs through the use of a long‐term empirical data set, a satellite‐based habitat model, and spatial autoregressive analyses on direct measures of change in an ecosystem service (i.e., the provision of wildlife species habitat). Giant panda (Ailuropoda melanoleuca) habitat improved in Wolong Nature Reserve of China after the implementation of the Natural Forest Conservation Program. The improvement was more pronounced in areas monitored by local residents than those monitored by the local government, but only when a higher payment was provided. Our results suggest that the effectiveness of a PES program depends on who receives the payment and on whether the payment provides sufficient incentives. As engagement of local residents has not been incorporated in many conservation strategies elsewhere in China or around the world, our results also suggest that using an incentive‐based strategy as a complement to command‐and‐control, community‐ and norm‐based strategies may help achieve greater conservation effectiveness and provide a potential solution for the park versus people conflict. 相似文献
Environmental Science and Pollution Research - In recent years, the development and utilization of water resources have imposed great impacts on hydrological characteristics and ecological... 相似文献
Characterization of the typical petroleum pollutants, polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, and indigenous microbial community structure and function in historically contaminated soil at petrol stations is critical. Five soil samples were collected from a petrol station in Beijing, China. The concentrations of 16 PAHs and 31 n-alkanes were measured by gas chromatography-mass spectrometry. The total concentrations of PAHs and n-alkanes ranged from 973 ± 55 to 2667 ± 183 μg/kg and 6.40 ± 0.38 to 8.65 ± 0.59 mg/kg (dry weight), respectively, which increased with depth. According to the observed molecular indices, PAHs and n-alkanes originated mostly from petroleum-related sources. The levels of ΣPAHs and the total toxic benzo[a]pyrene equivalent (ranging from 6.41 to 72.54 μg/kg) might exert adverse biological effects. Shotgun metagenomic sequencing was employed to investigate the indigenous microbial community structure and function. The results revealed that Proteobacteria and Actinobacteria were the most abundant phyla, and Nocardioides and Microbacterium were the important genera. Based on COG and KEGG annotations, the highly abundant functional classes were identified, and these functions were involved in allowing microorganisms to adapt to the pressure from contaminants. Five petroleum hydrocarbon degradation-related genes were annotated, revealing the distribution of degrading microorganisms. This work facilitates the understanding of the composition, source, and potential ecological impacts of residual PAHs and n-alkanes in historically contaminated soil.