The purpose of this study was to investigate associations between pyrethroids occupational exposures, and risk of abnormal glucose regulation. Data from total of 3080 subjects in two pesticide factories were used. This was a population-based case-controlled study in China. In total, 18.3% of subjects with impaired glucose regulation (IGR) and 6.5% of subjects with diabetes, and the prevalence of abnormal glucose regulation was 24.8%, 86 subjects had known type 2 diabetes and 114 had newly diagnosed diabetes. The prevalence of subjects with abnormal glucose regulation increased from 21.3% in the controls to 29.3% in the exposures (χ2 = 33.182, P < 0.001). Multivariate logistic regression was used to control potential confounders and calculate odd ratios as the estimate of effect. An indication of increased risk for abnormal glucose regulation was noted for exposure to pyrethroids (OR = 1.482, 95%CI = 1.238-1.774). Abnormal glucose regulation is common in subjects exposed to pyrethroids. The present investigation indicates the adverse health effects of pyrethroids are underestimated. 相似文献
Environmental Science and Pollution Research - In this work, new CO2 solubility data on three types of aqueous amine blends were reported to complement existing databases. The experiments were... 相似文献
In this study, both atmospheric particulates and dry deposited particulates were collected at a highway intersection, coastal location and suburban area in Taichung, Taiwan for the characterization of nitrate containing particulates (NCPs) in size distribution and dynamic properties. Collected particulates were placed in contact with nitron (C20H16N4) to form distinctive products of NCPs, which were examined by a SEM. For total atmospheric particulates, the sum of NCP and non-nitrate containing particulate (NNCP), the average shape factor values are 1.69, 1.49, and 1.36 for the highway intersection, coastal area and suburban area, respectively. The calculated shape factors show no significant differences with sizes. Dry deposition fluxes and atmospheric concentrations at various size ranges were estimated. The mass distributed in fine particle range (相似文献
Polycyclic aromatic hydrocarbon (PAH) exposure and genetic susceptibility were conductive to genotoxic effects including gene damage, which can increase mutational probability. We aimed to explore the dose-effect associations of PAH exposure with damage of exons of epidermal growth factor receptor (EGFR) and breast cancer susceptibility gene 1 (BRCA1), as well as their associations whether modified by Flap endonuclease 1 (FEN1) genotype. Two hundred eighty-eight coke oven male workers were recruited, and we detected the concentration of 1-hydroxypyrene (1-OH-pyr) as PAH exposure biomarker in urine and examined base modification in exons of EGFR and BRCA1 respectively, and genotyped FEN1 rs174538 polymorphism in plasma. We found that the damage indexes of exon 19 and 21 of EGFR (EGFR-19 and EGFR-21) were both significantly associated with increased urinary 1-OH-pyr (both Ptrend < 0.001). The levels of urinary 1-OH-pyr were both significantly associated with increased EGFR-19 and EGFR-21 in both smokers and nonsmokers (both P < 0.001). Additionally, we observed that the urinary 1-OH-pyr concentrations were linearly associated with both EGFR-19 and EGFR-21 only in rs174538 GA+AA genotype carriers (both P < 0.001). Moreover, FEN1rs rs174538 showed modifying effects on the associations of urinary 1-OH-pyr with EGFR-19 and EGFR-21 (both Pinteraction < 0.05). Our findings revealed the linear dose-effect association between exon damage of EGFR and PAH exposure and highlight differences in genetic contributions to exon damage and have the potential to identify at-risk subpopulations who are susceptible to adverse health effects induced by PAH exposure.
In this study, MnO2 and pyrolusite were used as the catalysts to prepare modified activated carbon, that is, AC-Mn and AC-P, respectively, from coals by blending method and steam activation. The Brunauer–Emmett–Teller (BET) results indicated that the AC-P had higher surface areas and micropore volumes than the AC-Mn with the same blending ratio. The relative contents of basic functional groups (i.e., C = O, π-π*) on AC-P were slightly lower than those on AC-Mn, while both contained the same main metal species, namely, MnO. The desulfurization results showed that with 3 wt% of blending ratio, AC-Mn3 and AC-P3 had higher sulfur capacities at 220 and 205 mg/g, respectively, which were much higher than for the blank one (149.6 mg/g). Moreover, the AC-P had relatively higher sulfur capacity than the AC-Mn with the same contents of Mn, which might be attributed to the existence of other metals in pyrolusite. After the desulfurization process, MnO were gradually transferred into MnSO4, and the relative contents of basic functional groups decreased evidently for both AC-Mn3 and AC-P3. The results demonstrated that pyrolusite could be one good alternative to MnO2 to prepare modified activated carbon for desulfurization.
Implications: MnO2 and pyrolusite were used as the additives to prepare modified activated carbon from coals by a blending method and by steam activation, that is, AC-Mn and AC-P, respectively. The AC-P had higher surface areas and micropore volumes than the AC-Mn with the same blending ratio. The AC-Mn and AC-P had higher sulfur capacities than a blank one. Moreover, the AC-P had relatively higher sulfur capacity than the AC-Mn with the same contents of Mn. The results demonstrated that pyrolusite could be one good alternative to MnO2 to prepare modified activated carbon for desulfurizatio. 相似文献
Environmental Science and Pollution Research - Preschool children aged 3–6 years are vulnerable to exposed to particulate matter (“PM10” and “PM2.5”). It is required... 相似文献
Pterocarya stenoptera is a native deciduous tree species and a candidate for reforestation in the riparian zones of the Three Gorges Reservoir Region of Yangtze River in China. Water treatments of continuous flooding (CF) and periodic flooding–drought (PF) were applied to examine the growth dynamics of 4-month-old P. stenoptera seedlings and its effects on soil chemical properties. Results showed that P. stenoptera seedlings in both CF and PF significantly decreased leaf biomass accumulation and the height and diameter growth as compared to that in control (CK; treatment with well-watered, well-drained soil), respectively. There was no significant difference in stem biomass among the three groups, but root biomass in PF showed severe reduction compared to that in both CK and CF. Total biomass in PF was significantly decreased compared to that in CK, but comparable to that in CF. Furthermore, no significant difference was found between CF and CK in total biomass. Water treatments in the unplanted soil pots significantly influenced soil pH, soil organic matter (OM), total nitrogen (TN), and alkali hydrolysable nitrogen (AN) contents, in contrast to no significant effects in total phosphorus (TP), total potassium (TK), available phosphorus (AP), and available potassium (AK) contents. In P. stenoptera soils, there were significant effects by water treatment, time, and treatment × time in the eight tested soil chemical properties, except treatment in TK and time effect in OM content. Compared to unplanted soils, the growth of P. stenoptera seedlings significantly increased soil pH value and OM, TN, TP, and TK contents, while decreasing AN, AP, and AK contents in CK group, augmented the mean value of each of the tested soil chemical properties with an exception of AK content in CF group, and increased soil pH value and TN, AN, TP, and AP contents with no significant differences in OM, TK, and AK contents in PF group. Given the fact that TN and TP contents significantly increased in P. stenoptera soils as compared to those in unplanted soils, growth of P. stenoptera seedlings should be a successful candidate for restoration within the highly dynamic hydrologic zone of the riparian zones of the Three Gorges Reservoir Region. 相似文献