Environmental Science and Pollution Research - Blue carbon sinks (mangroves, saltmarshes, and seagrasses) are considered an effective nature-based approach for climate change mitigation. Despite... 相似文献
The reactivity of cement pastes made by blending Portland cement with slag from municipal solid waste incinerator (MSWI) fly ash was investigated to assess the potential of recycling MSWI fly ash slag. The slag, prepared by melting MSWI fly ash at 1400 degrees C for 30 min, was pulverized and ground, then blended with ordinary Portland cement (OPC), using various substitution levels to make slag-blended cement (SBC). The pozzolanic reactivity of the ecocement was then characterized by determining variations in the compressive strength, degree of hydration, microstructure, speciation, and mineralogical crystalline phases. The results suggest that the strength of the pastes at an early age decreased with increasing substitution levels, whereas the strength at a later age of the tested pastes (with substitution levels less than 10%) outperformed OPC paste because of typical SBC properties. The development of strength at a later age was also confirmed by X-ray diffraction and scanning electron microscopy techniques. This implies that active silica (Si) and alumina (Al) react with the hydration product, calcium hydroxide (Ca(OH)2), to form calcium silicate hydrate (C-S-H), which contributed to strength development at a later age by the filling up of pores in the SBC pastes. The pozzolanic activity of the SBC pastes indicates that it is suitable for use as a substitute for OPC in blended cement. 相似文献
The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca2+ (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca2+ might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca2+ concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies.
In large-scale and complex industrial systems, unplanned outages and hazardous accidents cause huge economic losses, environmental contamination, and human injuries, due to component degradation, exogenous changes, and operational mistakes. In order to ensure safety and increase operational performance and reliability of complex system, this study proposes an integrated method for safety pre-warning to analyze the current safety state of each component and the whole system indicating hidden hazards and potential consequence, and furthermore predict future degradation trends in the long term.The work presented here describes the rationale and implementation of the integrated method incorporating HAZOP study, degradation process modeling, dynamic Bayesian network construction, condition monitoring, safety assessment and prognosis steps, taking advantage of the priori knowledge of the interactions and dependencies among components and the environment, the relationships between hazard causes and effects, and the use of historical failure data and online real-time data from condition monitoring.The application of the integrated safety pre-warning approach described here to the specific example of the gas turbine compressor system demonstrates how each phase of the presented method contributes to completion of the safety pre-warning system development in a systematic way. 相似文献