首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1071篇
  免费   56篇
  国内免费   422篇
安全科学   68篇
废物处理   62篇
环保管理   94篇
综合类   621篇
基础理论   224篇
污染及防治   328篇
评价与监测   39篇
社会与环境   35篇
灾害及防治   78篇
  2024年   1篇
  2023年   16篇
  2022年   62篇
  2021年   52篇
  2020年   34篇
  2019年   33篇
  2018年   58篇
  2017年   57篇
  2016年   51篇
  2015年   80篇
  2014年   91篇
  2013年   113篇
  2012年   113篇
  2011年   111篇
  2010年   72篇
  2009年   70篇
  2008年   73篇
  2007年   70篇
  2006年   46篇
  2005年   40篇
  2004年   20篇
  2003年   27篇
  2002年   31篇
  2001年   27篇
  2000年   25篇
  1999年   27篇
  1998年   24篇
  1997年   23篇
  1996年   22篇
  1995年   21篇
  1994年   10篇
  1993年   9篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   3篇
  1988年   7篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
排序方式: 共有1549条查询结果,搜索用时 312 毫秒
231.
杜仲 《安全》2011,32(4):8-11
中国民航维修系统正在建立安全管理体系,本文介绍了风险管理目的、构建原则并举例说明风险管理的实施步骤。为中国民航维修系统建立风险管理进行了有益的探索。  相似文献   
232.
Environment-friendly nano-catalysts capable of activating peroxymonosulfate (PMS) have received increasing attention recently. Nevertheless, traditional nano-catalysts are generally well dispersed and difficult to be separated from reaction system, so it is particularly important to develop nano-catalysts with both good catalytic activity and excellent recycling efficiency. In this work, magnetically recoverable Fe3O4-modified ternary CoFeCu-layered double hydroxides (Fe3O4/CoFeCu-LDHs) was prepared by a simple co-precipitation method and initially applied to activate PMS for the degradation of Rhodamine B (RhB). X-ray diffraction (XRD), fourier transform infrared spectrometer (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller method (BET), and vibrating sample magnetometer (VSM) were applied to characterize morphology, structure, specific surface area and magnetism. In addition, the effects of several key parameters were evaluated. The Fe3O4/CoFeCu-LDHs exhibited high catalytic activity, and RhB degradation efficiency could reach 100% within 20 min by adding 0.2 g/L of catalyst and 1 mmol/L of PMS into 50 mg/L of RhB solution under a wide pH condition (3.0-7.0). Notably, the Fe3O4/CoFeCu-LDHs showed good super-paramagnetism and excellent stability, which could be effectively and quickly recovered under magnetic condition, and the degradation efficiency after ten cycles could still maintain 98.95%. Both radicals quenching tests and electron spin resonance (ESR) identified both HO? and SO4?? were involved and SO4?? played a dominant role on the RhB degradation. Finally, the chemical states of the sample's surface elements were measured by X-ray photoelectron spectroscopy (XPS), and the possible activation mechanism in Fe3O4/CoFeCu-LDHs/PMS system was proposed according to comprehensive analysis.  相似文献   
233.
The extensive use of tetracycline hydrochloride (TCH) poses a threat to human health and the aquatic environment. Here, magnetic p-n Bi2WO6/CuFe2O4 catalyst was fabricated to efficiently remove TCH. The obtained Bi2WO6/CuFe2O4 exhibited 92.1% TCH degradation efficiency and 50.7% and 35.1% mineralization performance for TCH and raw secondary effluent from a wastewater treatment plant in a photo-Fenton-like system, respectively. The remarkable performance was attributed to the fact that photogenerated electrons accelerated the Fe(III)/Fe(II) and Cu(II)/Cu(I) conversion for the Fenton-like reaction between Fe(II)/Cu(I) and H2O2, thereby generating abundant ?OH for pollutant oxidation. Various environmental factors including H2O2 concentration, initial pH, catalyst dosage, TCH concentration and inorganic ions were explored. The reactive oxidation species (ROS) quenching results and electron spin resonance (ESR) spectra confirmed that ?O2? and ?OH were responsible for the dark and photo-Fenton-like systems, respectively. The degradation mechanisms and pathways of TCH were proposed, and the toxicity of products was evaluated. This work contributes a highly efficient and environmentally friendly catalyst and provides a clear mechanistic explanation for the removal of antibiotic pollutants in environmental remediation.  相似文献   
234.
Understanding ozone (O3) formation regime is a prerequisite in formulating an effective O3 pollution control strategy. Photochemical indicator is a simple and direct method in identifying O3 formation regimes. Most used indicators are derived from observations, whereas the role of atmospheric oxidation is not in consideration, which is the core driver of O3 formation. Thus, it may impact accuracy in signaling O3 formation regimes. In this study, an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O3 formation regimes during a long-lasting O3 exceedance event in September 2017 over the Pearl River Delta (PRD) of China. We discovered a clear relationship between atmospheric oxidative capacity and O3 formation regime. Over eastern PRD, O3 formation was mainly in a NOx-limited regime when HO2/OH ratio was higher than 11, while in a VOC-limited regime when the ratio was lower than 9.5. Over central and western PRD, an HO2/OH ratio higher than 5 and lower than 2 was indicative of NOx-limited and VOC-limited regime, respectively. Physical contribution, including horizontal transport and vertical transport, may pose uncertainties on the indication of O3 formation regime by HO2/OH ratio. In comparison with other commonly used photochemical indicators, HO2/OH ratio had the best performance in differentiating O3 formation regimes. This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O3 formation regime, and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O3 pollution over a photochemically active region.  相似文献   
235.
Nowadays, iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water. In this study, boron-doped biochar (B-BC) was successfully prepared at various preparation conditions with the addition of boric acid. The as-prepared material has a more developed pore structure and a larger specific surface area (up to 897.97 m²/g). A series of characterization results shows that boric acid effectively activates biochar, and boron atoms are successfully doped on biochar. Compared with the ratio of raw materials, the pyrolysis temperature has a greater influence on the amount of boron doping. Based on Langmuir model, the maximum adsorption capacity of 800B-BC1:2 at 25 °C, 40 °C, 55 °C are 50.02 mg/g, 95.09 mg/g, 132.78 mg/g, respectively. Pseudo-second-order kinetic model can better describe the adsorption process, the adsorption process is mainly chemical adsorption. Chemical complexation, ions exchange, and co-precipitation may be the main mechanisms for Fe2+ removal.  相似文献   
236.
为了加强对污染源的监控,准确地掌握污染物排放情况,中国石油天然气股份有限公司组织开展了水质在线监测系统研究,并逐步建立了污染源在线监测系统。文章介绍了有关水质在线监测系统的研究现状以及研究成果应用和推广情况。  相似文献   
237.
利用助剂法降低催化裂化再生烟气SOx排放   总被引:4,自引:0,他引:4  
由于加工原油重质比,SOx排放问题日益严重,为满足环保法规要求,我们应用了硫转移助剂,并进行了相关的技术及经济分析。  相似文献   
238.
Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.  相似文献   
239.
Journal of Material Cycles and Waste Management - Dephosphorization slag is primarily composed of CaO–SiO2–FeO–P2O5 slag system. As it contains abundant valuable components,...  相似文献   
240.
Previous assessments of the effectiveness of protected areas (PAs) focused primarily on changes in human pressure over time and did not consider the different human-pressure baselines of PAs, thereby potentially over- or underestimating PA effectiveness. We developed a framework that considers both human-pressure baseline and change in human pressure over time and assessed the effectiveness of 338 PAs in China from 2010 to 2020. The initial state of human pressure on PAs was taken as the baseline, and changes in human pressure index (HPI) were further analyzed under different baselines. We used the random forest models to identify the management measures that most improved effectiveness in resisting human pressure for the PAs with different baselines. Finally, the relationships between the changes in the HPI and the changes in natural ecosystems in PAs were analyzed with different baselines. Of PAs with low HPI baselines, medium HPI baselines, and high HPI baselines, 76.92% (n=150), 11.11% (n=12), and 22.86% (n=8) , respectively, showed positive effects in resisting human pressure. Overall, ignoring human-pressure baselines somewhat underestimated the positive effects of PAs, especially for those with low initial human pressure. For PAs with different initial human pressures, different management measures should be taken to improve effectiveness and reduce threats to natural ecosystems. We believe our framework is useful for assessing the effectiveness of PAs globally, and we recommend it be included in the Convention on Biological Diversity Post-2020 Strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号