首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   31篇
  国内免费   209篇
安全科学   67篇
废物处理   29篇
环保管理   61篇
综合类   273篇
基础理论   92篇
污染及防治   200篇
评价与监测   9篇
社会与环境   24篇
灾害及防治   28篇
  2024年   2篇
  2023年   7篇
  2022年   32篇
  2021年   35篇
  2020年   21篇
  2019年   16篇
  2018年   26篇
  2017年   34篇
  2016年   33篇
  2015年   41篇
  2014年   50篇
  2013年   48篇
  2012年   39篇
  2011年   46篇
  2010年   37篇
  2009年   27篇
  2008年   39篇
  2007年   26篇
  2006年   35篇
  2005年   31篇
  2004年   12篇
  2003年   32篇
  2002年   21篇
  2001年   5篇
  2000年   18篇
  1999年   12篇
  1998年   12篇
  1997年   8篇
  1996年   6篇
  1995年   9篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有783条查询结果,搜索用时 625 毫秒
371.
针对佛山市无铬钝化技术产业发展问题,依据技术路线图原理与制定方法,在对佛山市无铬钝化清洁生产技术路径即市场需求—产业目标—技术壁垒—研发需求进行分析的基础上,制定了佛山市无铬钝化清洁生产技术路线图,确定了产业发展方向和实现目标所需的关键技术,理清了产品和技术之间的关系。该技术路线图对促进无铬钝化技术的发展和标准的建立,以及保护地区环境和推动相关产品研发具有重要的科学意义。  相似文献   
372.
Tris(2-chloroethyl) phosphate(TCEP) is a typical phosphate flame retardant. Its potential adverse health effects have recently aroused concern. We investigated the seasonal variations of TCEP concentrations in the raw, finished and tap water samples from two drinking water treatment plants(DWTPs) in China, and evaluated the cytotoxicity and apoptosis/necrosis of organic extracts(OEs) in water samples. We enriched TCEP and OEs in water samples by solid-phase extraction method. The TCEP concentrations in water samples were determined by gas chromatography–mass spectrometry. Normal human liver cell line L02 was treated with OEs in the water samples, and then the cytotoxicity and apoptosis/necrosis were measured by 3-(4, 5-dimethyithiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and flow cytometry, respectively. The results showed that cytotoxicities of OEs in raw water samples from both DWTPs in summer and winter were stronger than those in spring and autumn, cytotoxicity of OEs in finished and tap water samples from both DWTPs in summer and autumn were stronger than those in spring and winter. In all seasons, the maximal concentrations(100 mL water/mL cell culture) of OEs in the raw water samples from both DWTPs induced late apoptosis/necrosis. The reasons for seasonal variations of TCEP in water samples and potential toxic effects of other pollutants in the water samples need to be further investigated.  相似文献   
373.
Widespread use of azole fungicides and low removal efficiency in wastewater treatment plants (WWTPs) have led to the elevated concentration of azole fungicides in receiving environment. However, there was limited research about the removal mechanism of azole fungicides in the biological treatment of WWTPs. Imidazole fungicide climbazole and triazole fungicide fluconazole were selected to investigate the biodegradation mechanism of azole fungicides in activated sludge under aerobic conditions. Climbazole was found to be adsorbed to solid sludge and resulted in quick biodegradation. The degradation of climbazole in the aerobic activated sludge system was fitted well by the first-order kinetic model with a half-life of 5.3 days, while fluconazole tended to stay in liquid and had only about 30% of loss within 77 days incubation. Ten biotransformation products of climbazole were identified by high resolution mass spectrometry using suspect and non-target screening method. But no biodegradation products of fluconazole were identified due to its limited removal. The possible biodegradation pathways for climbazole were proposed based on the products identification and pathway prediction system, and involves oxidative dehalogenation, side chain oxidation and azole ring loss. The findings from this study suggest that it should be a concern for the persistence of fluconazole in the environment.  相似文献   
374.
Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P < 0.001) for converted soils than those for cultivated soils but lower (P < 0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m?2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m?2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P < 0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).  相似文献   
375.
The separation of ultrafine oil droplets from wasted nanoemulsions stabilized with high concentration of surfactants is precondition for oil reuse and the safe discharge of effluent. However, the double barriers of the interfacial film and network structures formed by surfactants in nanoemulsions significantly impede the oil-water separation. To destroy these surfactant protective layers, we proposed a newly-developed polyethyleneimine micelle template approach to achieve simultaneous surface charge manipulation and morphology transformation of magnetic nanospheres to magnetic nanorods. The results revealed that positively charged magnetic nanospheres exhibited limited separation performance of nanoemulsions, with a maximum chemical oxygen demand (COD) removal of 50%, whereas magnetic nanorods achieved more than 95% COD removal in less than 30 s. The magnetic nanorods were also applicable to wasted nanoemulsions from different sources and exhibited excellent resistance to wide pH changes. Owing to their unique one-dimensional structure, the interfacial dispersion of magnetic nanorods was significantly promoted, leading to the efficient capture of surfactants and widespread destruction of both the interfacial film and network structure, which facilitated droplet merging into the oil phase. The easy-to-prepare and easy-to-tune strategy in this study paves a feasible avenue to simultaneously tailor surface charge and morphology of magnetic nanoparticles, and reveals the huge potential of morphology manipulation for producing high-performance nanomaterials to be applied in complex interfacial interaction process. We believe that the newly-developed magnetic-nanorods significantly contribute to hazardous oily waste remediation and advances technology evolution toward problematic oil-pollution control.  相似文献   
376.
The widespread contamination of water systems with antibiotics and heavy metals has gained much attention. Intimately coupled visible -light-responsive photocatalysis and biodegradation (ICPB) provides a novel approach for removing such mixed pollutants. In ICPB, the photocatalysis products are biodegraded by a protected biofilm, leading to the mineralization of refractory organics. In the present study, the ICPB approach exhibited excellent photocatalytic activity and biodegradation, providing up to ∼1.27 times the degradation rate of sulfamethoxazole (SMX) and 1.16 times the Cr(VI) reduction rate of visible-light-induced photocatalysis . Three-dimensional fluorescence analysis demonstrated the synergistic ICPB effects of photocatalysis and biodegradation for removing SMX and reducing Cr(VI). In addition, the toxicity of the SMX intermediates and Cr(VI) in the ICPB process significantly decreased. The use of MoS2/CoS2 photocatalyst accelerated the separation of electrons and holes, with•O2 and h+ attacking SMX and e reducing Cr(VI), providing an effective means for enhancing the removal and mineralization of these mixed pollutants via the ICPB technique. The microbial community results demonstrate that bacteria that are conducive to pollutant removal are were enriched by the acclimation and ICPB operation processes, thus significantly improving the performance of the ICPB system.  相似文献   
377.
张胜  林莉  潘雄  董磊 《环境科学研究》2022,35(5):1203-1210
河流作为内陆微塑料进入海洋的重要途径,其微塑料污染问题受到广泛关注. 为了解南水北调中线一期工程调水及梯级水利枢纽运行条件下,汉江(丹江口坝下-兴隆段)水体中微塑料的赋存状况,以该河段河道的表层水体以及王甫洲、崔家营、兴隆水利枢纽库区的表层、中层、底层水体为研究对象,通过野外采样调查,分析水体中微塑料的赋存特征. 结果表明:①汉江(丹江口坝下-兴隆段)表层水体中微塑料丰度的范围为4 467~8 400 n/m3,平均值为(6 260±1 431) n/m3,崔家营和兴隆水利枢纽库区中层水体中微塑料丰度均显著高于表层和底层水体. ②汉江(丹江口坝下-兴隆段)表层水体中微塑料粒径主要分布在[200, 500) μm,占比为42.5%;且随水深增加,微塑料粒径有增大趋势,崔家营水利枢纽库区底层水体、兴隆水利枢纽库区中层及底层水体中微塑料粒径均以[500, 1 000) μm为主. ③汉江(丹江口坝下-兴隆段)表层水体中观测到的微塑料以纤维状为主,占比为65.2%,但微塑料形状在水利枢纽库区随水深发生显著性变化,即随水深增加,纤维状的微塑料占比下降,碎片状的微塑料占比增加. ④汉江(丹江口坝下-兴隆段)表层水体中微塑料聚合物类型以尼龙为主,占比约为65.9%,但王甫洲、崔家营、兴隆水利枢纽库区中层及底层水体中尼龙的占比均有所下降,平均值分别为57.3%和43.1%. 研究显示,水利枢纽库区中的微塑料有在水体中层聚集的趋势,其粒径、形状和材质在不同水层的分布也有所不同,今后还需要对微塑料在水利枢纽库区中的沉降机制进行深入研究,以系统揭示微塑料在水利枢纽运行条件下的环境行为与输移规律.   相似文献   
378.
Environmental Science and Pollution Research - To quantitatively assess the risks associated with Carbon Capture and Storage (CCS) technology, a better understanding of the dispersion...  相似文献   
379.
Du  Chunyan  Yang  Lu  Tan  Shiyang  Song  Jiahao  Zhang  Zhuo  Wang  Shitao  Xiong  Ying  Yu  Guanlong  Chen  Hong  Zhou  Lu  Wu  Haipeng  Liu  Yuanyuan 《Environmental science and pollution research international》2021,28(47):66589-66601
Environmental Science and Pollution Research - In order to enhance degradation of harmful organic pollutants like Rhodamine B (RhB) dye under visible-light irradiation (λ &gt;420 nm), a...  相似文献   
380.
Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号