•Bacterially-mediated coupled N and Fe processes examined in incubation experiments. •NO3− reduction was considerably inhibited as initial Fe/N ratio increased.•The maximum production of N2 occurred at an initial Fe/N molar ratio of 6.•Fe minerals produced at Fe/N ratios of 1–2 were mainly easily reducible oxides. The Fe/N ratio is an important control on nitrate-reducing Fe(II) oxidation processes that occur both in the aquatic environment and in wastewater treatment systems. The response of nitrate reduction, Fe oxidation, and mineral production to different initial Fe/N molar ratios in the presence of Paracoccus denitrificans was investigated in 132 h incubation experiments. A decrease in the nitrate reduction rate at 12 h occurred as the Fe/N ratio increased. Accumulated nitrite concentration at Fe/N ratios of 2–10 peaked at 12–84 h, and then decreased continuously to less than 0.1 mmol/L at the end of incubation. N2O emission was promoted by high Fe/N ratios. Maximum production of N2 occurred at a Fe/N ratio of 6, in parallel with the highest mole proportion of N2 resulting from the reduction of nitrate (81.2%). XRD analysis and sequential extraction demonstrated that the main Fe minerals obtained from Fe(II) oxidation were easily reducible oxides such as ferrihydrite (at Fe/N ratios of 1–2), and easily reducible oxides and reducible oxides (at Fe/N ratios of 3–10). The results suggest that Fe/N ratio potentially plays a critical role in regulating N2, N2O emissions and Fe mineral formation in nitrate-reducing Fe(II) oxidation processes. 相似文献
• The OA supply significantly increased the water-extractable Mn in all soils.• All OA supply levels promoted plant growth in unexplored soil.• Low OA supply level promoted plant growth in explored and tailing soils.• OA amendment increased the Mn concentrations and total Mn in P. pubescens.• P. pubescens experienced less Mn stress in unexplored soil than in the other two soils. The current study evaluated the effects of oxalic acid (OA) application on the growth and Mn phytoremediation efficiency of Polygonum pubescens Blume cultivated in three different manganese (Mn)-contaminated soils sampled from an unexplored area (US), an explored area (ES) and a tailing area (TS) of the Ertang Mn mine, South China. The supplied levels of OA were 0 (control), 1 (low level), 3 (medium level), and 9 (high level) mmol/kg, referred to as CK, OA1, OA3 and OA9, respectively. The results revealed that the average water-extractable Mn concentrations US, ES and TS amended with OA increased by 214.13, 363.77 and 266.85%, respectively. All OA supply levels increased plant growth and Mn concentrations in US. The low OA supply level increased plant growth in ES and TS; however, contrasting results were found for the medium and high OA supply levels. Plant Mn concentrations and total Mn increased in ES and TS in response to all OA supply levels. Total Mn in the aerial parts increased by 81.18, 44.17 and 83.17% in US, ES and TS, respectively; the corresponding percentages for the whole plants were 81.53, 108.98 and 77.91%, respectively. The rate of ·O2− production and malondialdehyde (MDA) concentrations increased in response to OA amendment, especially the medium and high OA supply levels in ES and TS. In general, antioxidant enzymes might play a vital role in alleviating Mn stress in plants cultivated in US, while non-enzymatic antioxidants might be the main factor for plants cultivated in ES and TS. 相似文献
• A survey on individual’s perception of SARS-CoV-2 transmission was conducted.• Waterborne transmission risks are far less perceived by individuals.• Precautions of preventing wastewater mediated transmission are implemented.• The precautions for wastewater transmission are less favored by the public.• Education level differs the most regarding to waterborne transmission perception. SARS-CoV-2 has been detected in various environmental media. Community and individual-engaged precautions are recommended to stop or slow environmentally-mediated transmission. To better understand the individual’s awareness of and precaution to environmental dissemination of SARS-CoV-2, an online survey was conducted in Beijing during March 14–25, 2020. It is found that the waterborne (especially wastewater mediated) spreading routes are far less perceived by urban communities. The precautions for wastewater transmission are less favored by the public than airborne and solid waste mediated spreading routes. Such risk communication asymmetry in waterborne transmission will be further enlarged in places with fragile water system. Furthermore, education level is the most significant attribution (Sig.<0.05) that causes the difference of awareness and precautions of the waterborne transmission among the respondents, according to the variance analysis results. Our survey results emphasize the urgent need for evidence-based, multifactorial precautions for current and future outbreaks of COVID-19. 相似文献