首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1095篇
  免费   69篇
  国内免费   495篇
安全科学   65篇
废物处理   85篇
环保管理   81篇
综合类   566篇
基础理论   244篇
环境理论   1篇
污染及防治   491篇
评价与监测   59篇
社会与环境   23篇
灾害及防治   44篇
  2024年   4篇
  2023年   27篇
  2022年   64篇
  2021年   64篇
  2020年   54篇
  2019年   39篇
  2018年   42篇
  2017年   45篇
  2016年   57篇
  2015年   72篇
  2014年   100篇
  2013年   106篇
  2012年   92篇
  2011年   97篇
  2010年   79篇
  2009年   89篇
  2008年   102篇
  2007年   49篇
  2006年   60篇
  2005年   37篇
  2004年   37篇
  2003年   44篇
  2002年   51篇
  2001年   30篇
  2000年   33篇
  1999年   30篇
  1998年   37篇
  1997年   23篇
  1996年   32篇
  1995年   20篇
  1994年   7篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
排序方式: 共有1659条查询结果,搜索用时 15 毫秒
991.
以云南省澜沧拉祜族自治县铅矿区农田污染土壤为研究对象,采用土培实验的方法,研究生物炭、腐殖土和海泡石单施及配施条件下,土壤Pb、Zn和Cd有效态含量、重金属形态分布及微生物群落的变化.结果表明,腐殖土和生物炭改良剂均能有效地降低生物有效态Pb、Zn和Cd的含量,低剂量海泡石的添加修复效果不明显.其中,腐殖土的施入使土壤...  相似文献   
992.
典型污水处理厂中多环麝香的污染特征   总被引:3,自引:0,他引:3  
多环麝香在日常生活中被广泛使用,在生产和使用过程中会经过污水处理系统而进入环境中.研究了日用化妆品生产工厂排放的多环麝香在污水处理系统中污水和污泥的污染特征.在大型日用化妆品生产工厂污水处理厂的污水和污泥中均检测出较高浓度的多环麝香,HHCB和AHTN是两种主要污染物.其中多环麝香在污水处理系统进水中质量浓度范围为4.7(AHMI)~550 μg·L-1(HHCB),出水中质量浓度范围为:低于检测限(AHMI)~32.1μg·L-1(HHCB),污泥(干物质量)中多环麝香的含量范围为1.78(AHMI)~566 mg·kg-1(HHCB).污水处理系统污水中多环麝香的去除效率非常高,达到了90%以上,然而,污泥中却富集了大量的多环麝香,表明污水中的多环麝香很大一部分转移到了污泥中,从而可能成为环境中一种潜在的多环麝香污染源.  相似文献   
993.
2002年4月、7月、11月和2003年1月对滆湖底栖动物群落组成、分布及多样性现状进行了研究.结果表明,滆湖现有底栖动物31种,其中软体动物14种,淡水寡毛类6种,水生昆虫7种和水蛭4种.主要优势种为梨形环棱螺和羽摇蚊.相似性分析表明,滆湖网围养鱼区和网围养蟹区底栖动物群落组成相似程度较高,而都与非养殖区差异较大,说明网围养殖对底栖动物组成存在影响;而且网围养鱼对底栖动物的影响更甚于网围养蟹的影响.多样性分析表明,滆湖底栖动物多样性呈现自北向南递增以及夏秋低、冬春高的时空变化格局.图3表2参17  相似文献   
994.
镉胁迫对大豆花荚期生理生态的影响   总被引:6,自引:0,他引:6  
为了探讨重金属胁迫对大豆繁殖期生理生态的影响,采用盆栽试验方法,研究了Cd2+胁迫对五月王和日本青两个大豆品系花荚期植株生长及叶片叶绿素含量、超氧化物歧化酶(SOD),活性、过氧化物酶(POD),活性和丙二醛(MDA)含量的影响.结果表明:(1)低质量分数Cd2+胁迫对2个大豆品系的花荚期植株生物量和植株高度均具有促进作用,但随着Cd2+质量分数的增加转而抑制大豆植株的生物量和高度的增加,且质量分数越高其抑制作用越明显.(2)不同质量分数Cd2+处理对花荚期大豆叶片叶绿素合成具有刺激效应,两个大豆品系结荚期的叶绿素含量随胁迫时间的延长呈先增加后降低的趋势.(3)短时间、低质量分数的Cd2+胁迫能增强大豆花荚期SOD活性,长时间、高质量分数的Cd2+胁迫能抑制大豆花荚期SOD活性.(4)随着Cd2+质量分数增加,五月王和日本青结荚期POD活性逐渐升高,但其时间效应有差异;随着胁迫时间的延长,日本青花荚期POD活性稳步提高,而五月王在长时间、高质量分数Cd2+胁迫下POD活性降低.(5)随着Cd2+质量分数和胁迫时间的递增,大豆MDA含量呈"先升后降"趋势.(6)大豆五月王和日本青花荚期对Cd2+耐受性存在较大差异,这主要是由二者的遗传学因素不同决定的而不是环境因素.  相似文献   
995.
研究离子液体溴化1-十四烷基-3-甲基咪唑盐([C14mim]Br)对小鼠的肝脏毒性及其作用机制。实验设立3个剂量的染毒组(1/16 LD50、1/8 LD50、1/4 LD50)和1个空白对照组,考察昆明种小鼠染毒14 d后,[C14mim]Br对小鼠血清生化指标、肝脏抗氧化酶活性及脂质过氧化产物的影响,并观察肝脏组织的病理变化。与对照组相比,小鼠染毒后,血清中ALT、AST、DBIL和γ-GT明显升高;肝组织受到不同程度的损伤,HSI增大,蛋白质含量降低。当染毒剂量为1/4 LD50时,肝脏中SOD活性和GSH-Px活性显著降低,MDA的含量则明显增加。实验结果表明,[C14mim]Br可损伤小鼠的肝脏功能,破坏机体的抗氧化防御系统,造成氧化损伤和脂质过氧化。  相似文献   
996.
卡马西平在污水和水环境中广泛存在,且对水生生态系统安全构成风险,因此成为目前研究较多的药品之一。以北京清河再生水厂为例,研究"超滤—臭氧氧化—氯消毒"处理工艺中卡马西平的去除特性,并针对臭氧氧化和氯消毒工艺建立模拟卡马西平去除过程的机理模型。同时,利用美国环境保护署ECOTOX数据库,获取卡马西平对北京市水生生物物种的毒性数据,并基于毒性数据建立物种敏感度分布(species sensitivity distribution,SSD)模型,评价再生水厂出水补给地表水体时卡马西平产生的生态风险。臭氧氧化和氯消毒模型对卡马西平、总有机碳、氨氮等指标的模拟误差总体低于20%,模型的灵敏参数均可以被较好地识别,且其不确定性显著下降。对比7种SSD模型发现,对数正态分布和对数Logistic分布模型较好地拟合了北京市6个物种的卡马西平毒性数据,二者预测得到的总体生态风险期望值分别为7.4%和8.5%。  相似文献   
997.
利用聚乙烯醇与海藻酸钠固定包埋铜绿微囊藻,通过正交实验获得聚乙烯醇溶液浓度、海藻酸钠溶液浓度及铜绿微囊藻液量去除磷的最佳配比,研究溶液起始pH值、反应时间、磷初始浓度对固定化小球吸附磷的影响。结果表明,固定化小球的最佳制备条件为聚乙烯醇质量分数6%,海藻酸钠质量分数0.5%及铜绿微囊藻浓度2×107个/mL;固定化小球吸附磷的最适起始pH值为6~8,吸附达到平衡的时间为9~12 d,初始磷浓度为1.00 mg/L时去除率最高,达到79.19%。  相似文献   
998.
从疏水性较好的分子筛中筛选出2类吸附性能优良的分子筛,通过实验考察其对VOCs的吸附量、脱附量、吸附穿透曲线、脱附活化能等,评价其对VOCs的吸附脱附性能;评估了所选分子筛经多次吸附再生后的性能稳定性,建立了一套分子筛工业应用性能指标体系.结果 表明:Y型分子筛性能优于ZSM-5型分子筛;同种分子筛比表面积及孔径越大,...  相似文献   
999.
以载铝活性炭纤维毡为电极,在电场作用条件下对模拟含氟水进行静态吸附实验。结果表明,该载铝活性炭纤维毡正极化可以强化吸附除氟效果,吸附动力学数据很好地符合Lagergren二级速率方程,加电场时二级反应速率常数为4.50 g/(mg·h);其对高浓度含氟饮用水也有较高去除率,Freundlich吸附等温方程能很好地描述吸附平衡数据。加电场情况下,该载铝炭毡对氟离子的最大吸附量为16.584 mg/g,去除氟离子的最佳pH范围是5.5~8.9。共存阴离子Cl-、SO2-4和NO-3对炭毡吸附除氟没有抑制作用,但CO2-3的存在会导致除氟吸附量显著下降。  相似文献   
1000.
研究了Ag+、Pb2+、Zn2+、Hg2+等重金属离子对克氏原螯虾(Procambarus clarkia)N-乙酰-β-D-氨基葡萄糖苷酶(NAGase)活力的影响,结果表明:4种重金属离子对酶活力均有不同程度的可逆抑制作用,其中Hg2+、Zn2+对酶的抑制作用较强,表现为反竞争性抑制,对结合酶(ES)的抑制常数KIS分别为0.07 mmol/L和22.04 mmol/L;而Ag+、Pb2+对酶有先激活后抑制的作用,其中Ag+对酶的抑制作用类型表现为反竞争性抑制,其抑制常数KI为1.08 mmol/L,Pb2+对酶的抑制作用类型表现为非竞争性抑制,其抑制常数KI为26.17 mmol/L.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号