Previous studies demonstrated that short-term exposure to gaseous pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3)) had a greater adverse effect on cardiovascular disease. However, little evidence exists regarding the synergy between gaseous pollutants and cardiovascular disease (CVD). Therefore, we aimed to estimate the effect of individual gaseous pollutants on hospital admissions for CVD and to explore the possible synergistic effects between gaseous pollutants. Daily hospitalization counts for CVD were collected from January 1, 2014, to December 31, 2015. We also collected daily time series on gaseous pollutants from the Environment of the People’s Republic of China, including NO2, SO2, and O3. We used distributed lag nonlinear models (DLNMs) to assess the association of individual gaseous pollutants on CVD hospitalization, after controlling for seasonality, day of the week, public holidays, and weather variables. Then, we explored the variability across age and sex groups. In addition, we analyzed the synergistic effects between gaseous pollutants on CVD. Extremely low NO2 and SO2 increase the risk of CVD in all subgroup at lag 7 days. The greatest effect of high concentration of SO2 was observed in male and the elderly (≥ 65 years) at lag 3 days. Greater effects of high concentration of O3 were more pronounced in the young (< 65 years) and female at lag 3 days, while the effect of low concentration of O3 was greater in male and the young (< 65 years) at lag 0 day. We found a synergistic effect between NO2 and SO2 for CVD, as well as between SO2 and O3. The synergistic effects of NO2 and SO2 on CVD were stronger in the elderly (≥ 65) and female. The female was sensitive to synergistic effects of SO2-O3 and NO2-O3. Interestingly, we found that there was a risk of CVD in the susceptible population even for gaseous pollutant concentrations below the National Environmental Quality Standard. The synergy between NO2 and SO2 was significantly associated with cardiovascular disease hospitalization in the elderly (≥ 65). This study provides evidence for the synergistic effect of gaseous pollutants on hospital admissions for cardiovascular disease.
Polybrominated diphenyl ethers (PBDEs) have been extensively used as flame retardants in consumer products. PBDEs rapidly bioaccumulate in the environment, food, wild animals and humans. In this review, we investigated the harmful effects of PBDEs on humans, especially in early life, and summarised the levels of PBDEs in human biological samples (breast milk, cord blood and placentas). In addition, we described the spatiotemporal distribution of PBDEs in this review. PBDE levels in breast milk, cord blood and placentas were generally higher in North America than in other regions, such as Asia, Europe, Oceania and Africa. However, high levels of PBDEs in human biological samples were detected at e-waste recycling sites in South China, East China and South Korea. This finding suggests that newborns living in e-waste regions are exposed to high levels of PBDEs during prenatal and postnatal periods. The time trends of PBDE concentration differed according to the region. Few studies have investigated PBDE levels in humans from 1967 to 2000, but they increased rapidly after 2000. PBDE concentration peaked at approximately 2006 globally. Compared with other PBDE congeners, BDE-47, BDE-153 and BDE-209 were the major components, but the detection rate of BDE-209 was lower than those of others. Future studies should focus on determining the BDE-209 concentration, which requires the implementation of different analytical approaches. Additionally, the levels of PBDEs in human samples and the environment should be monitored, especially in e-waste recycling regions.
Motor vehicles are major sources of fine particulate matter (PM2.5), and the PM2.5 from mobile vehicles is associated with adverse health effects. Traditional methods for estimating source impacts that employ receptor models are limited by the availability of observational data. To better estimate temporally and spatially resolved mobile source impacts on PM2.5, we developed an approach based on a method that uses elemental carbon (EC), carbon monoxide (CO), and nitrogen oxide (NOx) measurements as an indicator of mobile source impacts. We extended the original integrated mobile source indicator (IMSI) method in three aspects. First, we generated spatially resolved indicators using 24-hr average concentrations of EC, CO, and NOx estimated at 4 km resolution by applying a method developed to fuse chemical transport model (Community Multiscale Air Quality Model [CMAQ]) simulations and observations. Second, we used spatially resolved emissions instead of county-level emissions in the IMSI formulation. Third, we spatially calibrated the unitless indicators to annually-averaged mobile source impacts estimated by the receptor model Chemical Mass Balance (CMB). Daily total mobile source impacts on PM2.5, as well as separate gasoline and diesel vehicle impacts, were estimated at 12 km resolution from 2002 to 2008 and 4 km resolution from 2008 to 2010 for Georgia. The total mobile and separate vehicle source impacts compared well with daily CMB results, with high temporal correlation (e.g., R ranges from 0.59 to 0.88 for total mobile sources with 4 km resolution at nine locations). The total mobile source impacts had higher correlation and lower error than the separate gasoline and diesel sources when compared with observation-based CMB estimates. Overall, the enhanced approach provides spatially resolved mobile source impacts that are similar to observation-based estimates and can be used to improve assessment of health effects.
Implications: An approach is developed based on an integrated mobile source indicator method to estimate spatiotemporal PM2.5 mobile source impacts. The approach employs three air pollutant concentration fields that are readily simulated at 4 and 12 km resolutions, and is calibrated using PM2.5 source apportionment modeling results to generate daily mobile source impacts in the state of Georgia. The estimated source impacts can be used in investigations of traffic pollution and health. 相似文献