The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca2+ (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca2+ might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca2+ concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies.
Two independent field trials were performed in Guangdong and Hubei, China in 2011 to investigate the dissipation and residue levels of triforine in strawberry and soil. A fast and simple method using gas chromatography with electron capture detector was developed and validated to determine triforine levels in strawberry and soil. The average recovery of triforine in strawberry ranged from 87.46 to 104.32 % with a relative standard deviation (RSD) of 0.72 to 4.54 %; that in soil ranged from 83.82 to 103.01 % with an RSD of 3.89 to 4.36 %. The limit of quantification of the proposed method was 0.01 mg/kg for both strawberry and soil. The results suggest that the triforine dissipation curves followed the first-order kinetic. The half-lives of triforine in strawberry from Guangdong and Hubei were 3.58 and 4.42 days, respectively; those in soil were 3.53 and 4.10 days, respectively. The terminal residues of triforine in strawberry ranged from 0.032 to 0.264 mg/kg at preharvest intervals of 0.5, 1, and 3 days. These values are lower than the maximum residue limit of 1 mg/kg in strawberry set by the Codex Alimentarius Commission. 相似文献