Environmental Science and Pollution Research - This study investigated the Pb(II) and Cd(II) sorption from aqueous solution by oily sludge-derived char (OSDC) prepared at different pyrolysis... 相似文献
This study aims to reveal the evolutionary process of particles during the diesel exhaust transport process and to further understand the effects of diesel exhaust transport distance (DET) on a particulate microstructure. Specifically, the micromorphological, particle size distribution, and aggregate characteristics of particles as well as the variation of the structural characteristics of elementary carbon particles (ECPs) as DET changed were examined using an engine exhaust particle size spectrometer, a high-resolution transmission electron microscopy system, and a small-angle X-ray scattering system. The results show the following: As DET increased, the chains gradually lengthened, the extent of accumulation and stacking increased, and a number of clusters gradually rose. The average particle diameter increased from 23.1 nm at 0 m to 92.7 nm at 3 m. In addition, as DET increased, the number of accumulation-mode particles, the number of folded, curved carbon layers in the inner core of carbon particles, and the disorderliness of carbon layers in the outer shell of carbon particles all increased. Moreover, the boundary between the inner core and the outer shell became increasingly obscure. As DET increased, there was a gradual decrease in the difference in electron density between particles, and the fractal dimensionality of the distribution, average cross-sectional size, radius of gyration, and axial length of pores were, respectively, 33.3%, 40%, 38.2%, and 50.3% less at 3 m than at 0 m. Besides that, the number of small (< 3 nm) pores gradually increased, and the number of large (> 10 nm) pores gradually decreased. Overall, as DET increased, pore size and number decreased. There was a gradual increase in the number of folded and curved carbon layers in the inner core of ECPs and an increase in the disorderliness of carbon layers in their outer shell as DET increased. Furthermore, the boundary between the inner core and the outer shell became increasingly obscure as DET increased. The crystallite size of ECPs decreased from 1.365 nm at 0 m to 1.098 nm at 3 m. This suggests that the number of continuously arranged carbon atoms decreased, the arrangement of carbon atoms was more disorderly, and the degree of graphitization decreased. As DET increased, there was a gradual increase in the interlayer spacing and curvature of ECPs. This suggests that increasing DET led to a more disorderly distribution of electron orbitals inside the carbon layers, less electron resonance stability in the carbon layers, greater oxidative activity of ECPs, and greater inherent oxidative capacity of particles.
Environmental Science and Pollution Research - This study investigated the feature of phosphorus uptake by low-cost waste concrete. Adsorption isotherms, metal dissolution, influence of P... 相似文献
Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 pm, corresponding with the wavelength region of visible light, which accounted for approximately 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein. 相似文献
In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others. 相似文献