首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25488篇
  免费   4195篇
  国内免费   8836篇
安全科学   4400篇
废物处理   531篇
环保管理   2271篇
综合类   20553篇
基础理论   3744篇
环境理论   2篇
污染及防治   2265篇
评价与监测   1760篇
社会与环境   1845篇
灾害及防治   1148篇
  2024年   293篇
  2023年   815篇
  2022年   1816篇
  2021年   1809篇
  2020年   2290篇
  2019年   1569篇
  2018年   1486篇
  2017年   1796篇
  2016年   1517篇
  2015年   1730篇
  2014年   1519篇
  2013年   2008篇
  2012年   2499篇
  2011年   2409篇
  2010年   2210篇
  2009年   2018篇
  2008年   1864篇
  2007年   1858篇
  2006年   1846篇
  2005年   1347篇
  2004年   936篇
  2003年   640篇
  2002年   606篇
  2001年   503篇
  2000年   441篇
  1999年   251篇
  1998年   86篇
  1997年   76篇
  1996年   71篇
  1995年   59篇
  1994年   45篇
  1993年   20篇
  1992年   38篇
  1991年   15篇
  1990年   9篇
  1989年   8篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
为探究pH值对亚硝酸盐氧化菌(NOB)活性动力学影响,本试验采用序批式活性污泥(SBR)反应器,以富含NOB的活性污泥为对象,基于Monod模型考察不同pH值对NOB活性动力学的影响并进行统计学分析.结果表明,Monod方程可较好地反映不同pH值条件下基质底物浓度对NOB比亚硝态氮氧化速率(SNiOR)的影响,且pH=7.0时动力学参数Ks为(6.167mg/L),rmax为[1.134g/(g·d)],此时NOB活性最好.利用钟形经验模型进行非线性回归拟合,最大比降解速率(rmax)随pH值的增大呈钟形变化,本试验NOB的最佳pH值为(6.9±0.1),其中rmax维持在ropt一半以上的pH值范围(ω)为(3.26±0.4).以亚硝酸盐氧化还原酶类基因(nxrA、nxrB)为引物,基于荧光定量PCR技术分析结果显示,在不同pH值条件下nxrA基因和nxrB基因拷贝数的变化趋势均与动力学参数(Ks、rmax)的规律一致,且nxrA和nxrB基因在系统的降解过程中起协同作用.  相似文献   
42.
为研究机动车道路行驶过程中轮胎磨损排放的颗粒物理化特性,利用轮胎轮廓仿真磨耗仪,对国内主流17种轮胎胎面进行仿真磨耗实验,获得颗粒物样品,提取并检测其中18种元素和20种多环芳烃(PAHs)的含量.结果显示,元素和PAHs含量因轮胎品牌和速度等级的不同而差异显著.18种元素平均含量为(99.04±68.43)mg/g,占样品总重的9.90%,其中Si(88.97±67.85)mg/g、Zn(6.77±1.64)mg/g和Na(1.05±0.75)mg/g的平均含量均超过1mg/g,Cd的含量最低,为(0.43±0.31)μg/g.20种PAHs含量之和(∑20PAHs)在12.13~433.64 μg/g,平均为(94.13±110.18)μg/g,PY的平均含量最高(30.98±31.27)μg/g,其次是CHR、BaP、FA、PHE和BghiP,平均含量最低的是AC(0.58±0.2)μg/g;从环数看,以4环PAHs为主(占∑20PAHs的45.03%~67.93%),其次为3环(平均含量为15.45%)和5环(平均含量为12.62%).总体来说,国外品牌轮胎样品中元素和PAHs含量略高于国内品牌,而主要PAHs环数略低于国内品牌.  相似文献   
43.
船舶排放是我国沿海地区重要的人为排放源,但现有的船舶排放评估研究大多只关注区域尺度的影响分析,而且忽视了排放清单的不确定性,这在一定程度上削弱了评估结果的可靠性.为此,本文利用WRF-SMOKE-CAMQ空气质量模型,定量评估了船舶排放及其不确定性对我国七大沿海港口城市夏季空气质量的影响,结果表明:船舶排放对我国主要沿海港口城市的SO2、NOx和PM2.5浓度贡献范围分别为16.5%~62.5%、21.9%~72.9%和5.9%~26.0%,尤其对宁波、青岛和深圳等港口城市空气质量的影响显著,主要是由于港口较高的船舶排放以及气象传输两方面原因造成的;如果考虑船舶排放清单的总量不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.0~3.1,2.1~5.5,0.3~0.9μg/m3的波动;考虑船舶排放清单的时空分配不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.9~15.7,5.1~29.3,0.6~2.5μg/m3的波动.可见,船舶排放清单的不确定性对沿海城市船舶排放贡献影响量化有明显的影响.所以在评估船舶排放对港口城市空气质量的影响时,要考虑船舶排放清单的不确定性,尤其是时空分配的不确定性.而合理的时空分配能够提高船舶排放清单的质量和对沿海空气质量模拟的准确性.  相似文献   
44.
为了探讨Fas/FasL途径在氟暴露致PC12细胞凋亡中的作用及其机制,采用含20、40、80、160mg/L NaF培养液处理PC12细胞.结果表明,所有剂量NaF处理12、24、36、48h,PC12细胞活性升高;上述不同剂量NaF处理24h后,与对照组比,PC12细胞的活性氧水平、细胞凋亡率、细胞内Fas/FasL信号转导通路Fas和FasL、Caspase8、FADD、Caspase3基因和蛋白表达水平均呈显著上升(P < 0.05),而Bid基因和蛋白表达水平显著下降(P < 0.05),且呈氟暴露剂量依赖性.结果提示Fas/FasL途径在氟暴露致PC12细胞凋亡中起重要作用,其中FADD可能是Fas/FasL凋亡途径中的重要靶分子.  相似文献   
45.
酸性紫色水稻土颗粒有机质对镉的吸附特性   总被引:1,自引:0,他引:1  
采集典型的酸性紫色水稻土(APPS),从中分离出颗粒有机质(POM),通过批量试验研究POM及其来源土壤Cd2+的吸附动力学、等温吸附和热力学特征,通过扫描电镜-能谱仪、傅里叶红外光谱仪等手段及吸附前后镉的形态变化的测定,研究了POM对Cd2+的吸附机制.结果表明:POM对Cd2+的亲和力远高于其来源土壤.POM及土壤对Cd2+的吸附动力学最优模型均为准二级动力学.Langmuir、Freundlich方程均能较好地描述其等温吸附特征,其中对POM,以Freundlich方程更优,表明POM对Cd2+的吸附属于多分子层的非均质吸附.吸附热力学参数△Gθ均小于0、△Hθ和△Sθ均大于0,表明吸附属于自发吸热过程.根据△Hθ值及解吸试验判定POM对Cd2+的吸附以化学吸附为主,土壤对Cd2+的吸附过程以物理吸附为主.吸附平衡后,土壤中可交换态镉比例提高,而POM中交换态和络合态镉比例增加.综上及吸附前后POM的表征结果说明,POM对Cd2+的吸附机制包括含氧官能团的络合、离子交换、阳离子-π键、沉淀作用和静电吸附.  相似文献   
46.
为改善厌氧反应器内的流态,加快污泥的颗粒化和形成具有生态梯度的微生物生态系统,设计并制作了新型厌氧多级喷动床,实验测试了反应器的水力喷动、气体喷涌和污泥分层分级现象。在常温下,利用新型厌氧多级喷动床接种混合污泥,经过42 d的培养,成功启动厌氧氨氧化反应器,稳定运行18 d后,NH4+-N、NO2--N去除率均达到90%以上。启动60 d后,反应器底部出现大量粒径2 mm左右的颗粒污泥,且污泥具有良好的稳定性和沉降性能,沉降速度达到70 m/h。结果表明:厌氧多级喷动床因其特殊的水力结构,可有效加快污泥的颗粒化。  相似文献   
47.
以浙江省宁波市地下管廊施工为研究对象,通过现场调研和建筑施工进度跟踪,建立了工程渣土、废弃混凝土、工程泥浆3种建筑垃圾的定量预测模型。结果表明:预计产生程渣土为83891.21 m3、废弃混凝土为4837.34 m3、工程泥浆为11435.27 m3。与真实值相比,模型的相对误差分别为8.6%,4.9%,3.5%,均低于20%,可认为三类建筑垃圾预测模型的建立有效。  相似文献   
48.
为更好地解决手工制作的建筑垃圾堆放点样本集效率低、数据量少,难以支撑基于深度学习的遥感图像目标检测算法训练需求的问题,采用基于像素的遥感分类方法构建建筑垃圾堆放点样本集,在此基础上结合直方图均衡化,CS-LBP算子约束以及迁移学习的方法对Wasserstein生成对抗模型(WGAN)进行优化,实现了样本集扩充。研究结果表明:相对于纯手工制作的样本集,基于像素的遥感分类方法可以显著提升样本集制作的效率;同时,经过WGAN优化后,生成样本模拟了原始数据的颜色与纹理特征分布规律,增加了原始数据的多样性,满足了扩充样本集的需求。  相似文献   
49.
为了提升我国工业园区绿色发展水平,对目前我国工业园区发展历程、现状特征进行了分析,对工业园区绿色发展政策进行了梳理和对比,并结合工业园区绿色发展中存在的问题提出了对策建议.研究表明:①我国工业园区经历了快速发展、调整发展和科学发展等阶段,在经济发展、资源与能源优化利用、污染减排等方面成效显著.②我国工业园区绿色发展的相关政策主要体现在国家生态工业示范园区创建、园区循环化改造、国家低碳工业园区试点、绿色园区建设和UNIDO绿色工业园区创建等工作中,这些政策在推动主体、实施路径、侧重方向上各不相同又各有特色,对推动工业园区节能减排绩效明显.③目前,我国工业园区绿色发展存在的问题主要表现在重视程度有待提升、风险防范意识有待加强、创新能力有待提高等方面.为此,提出了我国工业园区绿色发展对策建议:积极践行绿色发展理念,推进园区绿色化、生态化、低碳化建设,实现经济环境双赢;注意环境风险防控,确保环境安全;创新管理机制,强化监督管理.   相似文献   
50.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号