首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7148篇
  免费   1426篇
  国内免费   2509篇
安全科学   1324篇
废物处理   141篇
环保管理   620篇
综合类   6448篇
基础理论   1053篇
污染及防治   190篇
评价与监测   472篇
社会与环境   486篇
灾害及防治   349篇
  2024年   87篇
  2023年   204篇
  2022年   545篇
  2021年   551篇
  2020年   730篇
  2019年   479篇
  2018年   451篇
  2017年   456篇
  2016年   404篇
  2015年   523篇
  2014年   456篇
  2013年   572篇
  2012年   691篇
  2011年   733篇
  2010年   602篇
  2009年   631篇
  2008年   578篇
  2007年   534篇
  2006年   523篇
  2005年   399篇
  2004年   299篇
  2003年   184篇
  2002年   162篇
  2001年   118篇
  2000年   84篇
  1999年   65篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
601.
云南西南地区自然资源丰富,近年来,随着社会经济的快速发展,橡胶、茶园和桉树等人工园林大规模种植主要占用了天然林和耕地,土地利用结构和空间布局发生了很大变化。为了探讨土地利用/覆被变化对植被净初级生产力(NPP)的影响,以人工园林大面积种植区西盟县为研究区,运用综合模型、CASA模型和MODIS产品(BIOME-BGC模型),对西盟县2000年、2005年、2010年和2015年各地类NPP的时间变化和空间分布特征进行分析。结果表明:(1)2000~2015年,CASA模型模拟的西盟县NPP呈先减少后增加的趋势,MODIS模型模拟的NPP值变化趋势与CASA模型一致,综合模型则呈现逐年增加的趋势;(2)西盟县NPP的空间分布形态从西至东均呈“低值-高值-低值-高值-低值”(“M”)变化,与西盟县水热资源的分布特征和土地利用/覆被变化有关,西盟县NPP空间变化主要集中于人工园林种植区;(3)3种模型中,CASA模型和MODIS产品(BIOME-BGC模型)比综合模型更适用于地形气候复杂多样的山区NPP的模拟计算,其中CASA模型空间精度更高。  相似文献   
602.
2016年9月利用多波束测深仪调查了张家洲河段河床微地貌的高分辨率形态与分布特征,结合1998年和2013年水下地形资料,分析了三峡截流以来该河段河槽的冲淤变化与演变趋势。结果表明:(1)张家洲河段整体呈冲刷状态,净冲刷量17.2×10.6 m3。其中,张家洲南水道是强冲刷区,最大冲刷深度约9 m;(2)河槽表层沉积物中值粒径为149.1~226.3 μm,与历史资料相比呈粗化趋势;(3)张家洲河段约82.9%的主航道发育了沙波,约14.0%的主航道发育了冲刷坑与冲刷槽,平床地形仅占3.1%。流域来沙量减少是张家洲河段整体冲刷的主要原因,而河流控制工程稳定了河势,迫使水流归槽,加剧了张家洲南水道的冲刷。随着流域来沙量持续减少,张家洲南水道主航道有可能进一步冲刷  相似文献   
603.
水环境系统脆弱性是水资源利用与生态环境研究的热点问题,通过研究水环境系统的内在机理,综合考虑影响水环境系统脆弱性的资源、环境、经济、社会等因素,借助驱动力-压力-状态-影响-响应-管理(DPSIRM)框架构建水环境系统脆弱性评价指标体系。在此基础上,构建基于变权灰色云模型的评价方法,对2004~2014年江苏省水环境系统脆弱性进行评价。结果表明:2004~2014年水环境系统脆弱性指数由47.056提高到63.210,脆弱性等级由“重度脆弱”演化为“中度脆弱”,并长期维持在“中度脆弱的”等级,2014年出现了向“轻度脆弱”状态转变的趋势。分析各个子系统对水环境系统脆弱性影响程度可知,影响子系统和响应子系统对江苏省水环境脆弱性系统的影响程度逐年增加;而压力子系统和管理子系统对水环境系统脆弱性的影响程度逐年下降;其它子系统对水环境系统脆弱性的影响维持在一定水平小幅度波动。  相似文献   
604.
为了降低平煤十矿己15-16-24130工作面运输巷掘进中的突出危险性,基于实际工程背景,考虑瓦斯抽采中的瓦斯运移及煤岩变形等因素,建立了瓦斯抽采气固耦合模型,并利用COMSOL Multiphysics软件对平煤十矿己15-16煤层的底板巷穿层钻孔瓦斯抽采方案进行数值模拟,研究了瓦斯抽采对于降低掘进过程中突出危险性的影响。研究结果表明:在己18煤层开挖底板巷对己15-16煤层进行穿层钻孔瓦斯抽采,瓦斯抽采180 d后,己15-16-24130工作面运输巷附近煤层残余瓦斯压力及瓦斯含量分别降至0.315 MPa和3.84 m3/t;将底板巷穿层钻孔瓦斯抽采方案进行工程应用,实测抽采后的残余瓦斯压力及瓦斯含量在0.32 MPa和3.17 m3/t,均小于平煤十矿煤与瓦斯突出防治规定的“双6”指标(残余瓦斯压力小于0.6 MPa,残余瓦斯含量小于6 m3/t),可有效降低运输巷掘进过程中的突出危险性。  相似文献   
605.
为了实时动态监测采空区构筑物漏风情况,自主研发了一种井下采空区构筑物漏风实测装置。通过现场实测及应用,研究结果表明:风流从工作面上进风口漏入采空区,而采空区中风流一部分通过与工作面之间的漏风流进入工作面下进风口,在下隅角位置附近形成一个涡流区;另一部分风流穿过沿空留巷构筑物进入留巷内,由于采空区的压实程度不同,采空区侧留巷内漏风速度曲线近似呈“L”型下降;通过收集分析留巷内漏风气体,其结果可反映采空区中瓦斯浓度分布情况,为采空区瓦斯治理提供了一种新的监测技术手段,且能有效地降低采空区瓦斯事故发生率,保证矿井的安全生产。  相似文献   
606.
为建立考虑地层和套管参数随机性的套管可靠度评价理论方法,以便得到复杂井况下套管传统设计安全系数与可靠指标之间的关系,提出了非均匀地应力和内压联合作用下,沿套管最大外挤力方向管壁任意位置发生屈服失效时外壁等效均匀外挤力的计算方法;建立了套管抗挤和抗内压三轴强度计算公式以及有效内压计算方法;根据套管载荷和强度影响因素统计参数以及评价过程中参数测试标准值,利用蒙特卡洛法(MC)建立了完整的套管可靠度计算和评价方法;通过实例对传统安全系数与可靠指标的对应关系进行了研究。研究结果表明:指定条件下,套管安全系数与可靠指标之间存在对应关系;利用建立的方法编制计算程序可以为传统设计法中安全系数代表的安全程度进行量化;可靠度评价方法能够为安全系数的选取提供指导。  相似文献   
607.
王锋  周律  赵剑强 《化工环保》2018,38(3):261-266
介绍了移动床生物膜反应器(MBBR)中悬浮载体的种类和特性,讨论了对其性能的影响因素,总结了当前悬浮载体改性技术及性能评价的方法,并对后续研究提出了建议。  相似文献   
608.
李楠  王鹏  宋伦  邵泽伟  赵海勃 《化工环保》2018,38(3):300-304
以颗粒活性炭(GAC)为载体、铜为活性组分、铈为助剂组分、草酸钠为沉淀剂,采用浸渍焙烧法制得CuO_x-CeO_2/GAC催化剂。以H_2O_2为氧化剂,微波强化催化湿式过氧化氢氧化(CWPO)处理二甲亚砜(DMSO)初始质量浓度为1 000 mg/L的废水,处理3 min后DMSO去除率达93.8%。催化剂第7次使用时DMSO去除率仍保持在75%以上。初始废水pH在3~9范围内,DMSO去除率均在85%以上。助剂Ce的加入提高了催化剂表面活性组分的分散性和稳定性,使催化剂的活性稳定性和使用寿命显著提高。  相似文献   
609.
以五水硝酸铋为铋源、钼酸钠为钼源、硫脲为硫源,采用简单的一步水热法合成了MoS_2/Bi_2S_3异质结光催化剂,采用XRD,SEM,TEM,BET,UV-Vis DRS技术对其进行了表征。表征结果显示,MoS_2纳米片在Bi_2S_3微棒表面生长,增加了比表面积和活性位点,并形成异质结构,促进了光生载流子的迁移,抑制了电子-空穴对的再复合。实验结果表明:钼酸钠与五水硝酸铋的质量比为1∶2时制备的复合光催化剂性能最好,反应180min时对亚甲基蓝的去除率可达96.4%,明显高于MoS_2和Bi_2S_3,且具有较高的稳定性;该催化剂对罗丹明B、甲基橙和4-硝基苯酚的去除率分别为97.1%、93.1%和90.5%,表明其对污染物具有普适性。  相似文献   
610.
采用非皂化P204和皂化P204萃取剂对不锈钢酸洗污泥的硫酸浸出液进行萃取。在浸出液pH为0.80、非皂化P204体积分数为25%、萃取剂与浸出液体积比为1∶2、萃取时间为5 min的条件下,Fe~(3+)萃取率达99.64%,Cr~(3+)和Ni~(2+)萃取率为3.98%和6.99%,一次萃余液pH为0.64。采用皂化P204对除Fe~(3+)后的一次萃余液进行萃取,在P204体积分数为25%、萃取剂与浸出液体积比为1∶2、萃取剂皂化率为60%、一次萃余液pH为1.50、萃取时间为5 min的条件下,Ni~(2+)萃取率为93.12%,Cr~(3+)萃取率为20.69%,二次萃余液pH为2.63。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号