首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6944篇
  免费   1256篇
  国内免费   2291篇
安全科学   1193篇
废物处理   129篇
环保管理   672篇
综合类   5843篇
基础理论   973篇
污染及防治   235篇
评价与监测   427篇
社会与环境   589篇
灾害及防治   430篇
  2024年   72篇
  2023年   154篇
  2022年   448篇
  2021年   509篇
  2020年   596篇
  2019年   364篇
  2018年   391篇
  2017年   427篇
  2016年   364篇
  2015年   461篇
  2014年   442篇
  2013年   564篇
  2012年   677篇
  2011年   659篇
  2010年   637篇
  2009年   615篇
  2008年   529篇
  2007年   554篇
  2006年   563篇
  2005年   410篇
  2004年   265篇
  2003年   187篇
  2002年   175篇
  2001年   146篇
  2000年   129篇
  1999年   83篇
  1998年   19篇
  1997年   10篇
  1996年   10篇
  1995年   5篇
  1994年   9篇
  1993年   2篇
  1992年   10篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
排序方式: 共有10000条查询结果,搜索用时 719 毫秒
201.
马娟  王谨  俞小军  周猛  孙洪伟  王磊 《环境科学》2017,38(12):5146-5153
实验采用改良型CAST工艺,以生活污水为研究对象,考察了C/P、回流比及温度等不同运行模式对系统除磷性能的影响.结果表明,常温条件下进水C/P由50升至100,系统除磷率均值从15%迅速升至95.6%,除磷性能显著提高;继而降低C/P至75,除磷性能因进水碳源不足再度下降,除磷率均值为51.4%,且长期投加易降解碳源引发系统污泥膨胀并导致污泥大量流失.C/P较低情况下,回流比由25%降低至12.5%,除磷性能提高2.3倍,继续降低回流比至0,除磷性能反而下降;温度实验研究则表明,低温系统(14℃±1℃),除磷率稳定维持在90%以上,而高温短程硝化系统(27℃±1℃)除磷率仅为14.1%,可见低温更有利于系统磷的去除.吸磷小试发现,常温系统污泥以O_2、NO_3~-和NO_2~-为电子受体均能进行吸磷,而低温系统污泥能以O_2、NO_3~-为电子受体进行吸磷,高温系统污泥则仅能以O_2为电子受体进行少量吸磷.此外,实验还发现,系统短期闲置导致的污泥"饥饿"有利于系统除磷率的提高.  相似文献   
202.
三门峡水库水体中不同形态汞的分布特征   总被引:2,自引:1,他引:1  
程柳  麻冰涓  周伟立  王力  职音  刘清伟  毛宇翔 《环境科学》2017,38(12):5032-5038
为了解三门峡水库水体中不同形态汞的分布特征,在丰水期和枯水期对三门峡水库进行采样,分别采用冷原子荧光光谱法(CVAFS)和蒸馏-乙基化衍生-气相色谱-冷原子荧光法(GC-CVAFS)测定水样中总汞、总甲基汞、溶解态总汞和溶解态甲基汞的浓度.结果表明,三门峡水库水体中总汞、溶解态汞和颗粒态汞浓度范围分别为1.65~9.65、0.80~3.16和0.70~7.81 ng·L~(-1),符合国家地表水环境质量标准(GB 3838-2002)一类水汞浓度标准限值;总甲基汞、溶解态甲基汞和颗粒态甲基汞浓度分别为0.05~0.36、0.02~0.14和ND~0.26 ng·L~(-1).三门峡水库水体总汞和甲基汞在季节和空间分布上没有呈现出明显的变化规律.总汞和甲基汞与未受污染的天然水体差别不大,水库未受到明显的汞污染.丰、枯水期沉积物中总汞浓度分别为(92.96±10.65)ng·g~(-1)和(80.06±19.14)ng·g~(-1),甲基汞浓度分别为(0.33±0.14)ng·g~(-1)和(0.50±0.19)ng·g~(-1).较低的甲基汞浓度说明在三门峡水库汞的迁移转化过程中,甲基化作用可能并非主要的过程,这可能与水体底层溶解氧浓度较高以及沉积物中有机质浓度较低有关.  相似文献   
203.
ENSO事件对上海降水中氢氧同位素变化的影响   总被引:2,自引:0,他引:2  
根据2012年1月至2017年2月上海206个降水样品实测数据,结合全球大气降水同位素网络(GNIP)提供的南京、武汉、福州、香港1961~2012年大气降水同位素数据分析不同强弱程度的ENSO事件对降水中同位素组成影响的差异性.研究时段内上海降水中δD与δ~(18)O夏秋为低值,冬春为高值.El Nino事件期间大气降水线的斜率与截距均大于非El Nino事件期间,La Nina事件期间反温度效应、降水量效应、水汽压效应较非La Nina事件期间显著.不同强弱程度的El Nino和La Nina事件影响下的上海降水中δ~(18)O、d值与海洋尼诺指数(ONI)、海表温度距平值(SSTA)、ONI极值、累积值ΣONI这4个指数具有明显的负相关关系,并且降水中δ~(18)O与ONI、SSTA两个指数相关性大小受ENSO事件的影响较大.  相似文献   
204.
长江口海域底栖生态环境质量评价——AMBI和M-AMBI法   总被引:5,自引:0,他引:5  
蔡文倩  孟伟  刘录三  朱延忠  周娟 《环境科学》2013,34(5):1725-1734
AMBI(AZTI’s Marine Biotic Index)和M-AMBI(Multivariate-AMBI)指数可以有效地评价河口和近岸海域软底质海洋大型底栖动物群落对人为和自然扰动的响应.本研究根据2009年4月在长江口采集的大型底栖动物资料,首次在长江口海域同时运用栖息密度和生物量计算AMBI(BAMBI)和M-AMBI(M-BAMBI),对其进行底栖生态质量评价.结果表明,长江口底栖生态环境皆受到不同程度的干扰,其中受干扰最严重的区域集中在杭州湾、舟山及长江口门区附近海域,与该海域的陆源排污、富营养化以及大量的海岸工程建设等有密切的关系.单因素方差分析表明,运用栖息密度和生物量计算出的两个指数值,评价结果无明显的差异.与AMBI相比,M-AMBI与本研究生物群落结构参数以及环境因子的匹配度更高,能够更有效地评价长江口底栖生态环境质量.Pearson相关分析和一元线性回归分析表明,M-AMBI与底层水体的富营养化指数之间存在线性显著负相关关系,而与表层水体的呈非线性显著负相关;AMBI与富营养化指数之间却无显著相关关系,说明M-AMBI更适合指示长江口水域的富营养化压力.  相似文献   
205.
气相防锈技术在电器设备防腐中的应用   总被引:4,自引:1,他引:3       下载免费PDF全文
目的研究新型气相防锈剂对电器设备的防护效果及电性能的影响,解决电器设备服役过程中的腐蚀防护问题。方法采用中性盐雾试验对新型气相防锈剂对电器设备的防护效果进行测试,并通过绝缘电阻、介电常数、电容、表面电阻、体积电阻、电阻、耐击穿电压等测试了新型气相防锈剂对电器元件、电器设备电性能的影响。结果中性盐雾试验240 h后,无新型气相防锈剂保护的电器设备锈蚀严重,有新型气相防锈剂保护的电器设备锈蚀相对微弱;电路板原材料环氧树脂板、安规电器元件、电器设备与气防锈发散体直接接触720 h后,各自的电性能基本上没有变化,同时电器设备的正常功能也不受影响。结论新型气相防锈剂对电器设备有较好的防护效果,且不影响其电性能,可将其应用到电器设备实际运行过程中,解决电器设备服役过程中的腐蚀防护问题。  相似文献   
206.
利用水热反应法制备β-In2S3纳米颗粒光催化剂,并利用SEM、TEM和XRD等对其进行分析表征;采用土霉素溶液模拟四环素类抗生素废水,探讨In2S3对土霉素的降解效果.结果表明,β-In2S3为立方相纳米颗粒结构,该纳米颗粒由纳米片组成,直径约15~30 nm.以太阳光为辐射光源,In2S3对土霉素具有良好的光催化降解效果,在4 h内对初始浓度为30 mg·L-1的土霉素降解率可达98%以上.降解土霉素后的催化剂在无水乙醇中清洗并烘干,经4次循环利用后,β-In2S3的降解能力仍能达到85%以上,表明β-In2S3光催化剂具有良好的稳定性以及光催化活性.  相似文献   
207.
水体富营养化的形成与沉积物中氮素的"源-汇"关系密切,本研究选取三峡典型支流澎溪河消落带上、中、下这3个水文断面,160 m和170 m两个水位高程,0~20、20~40、40~60、60~80、80~100 cm共5个深度的沉积物样品,通过研究其总可转化态氮(TF-N)与各形态可转化态氮含量及分布特征,旨在揭示周期性水位变化对消落带沉积物氮释放的影响.结果表明,澎溪河消落带沉积物总氮含量在313.02~3 255.53 mg·kg-1之间,空间分布上呈上站位(渠口)中站位(高阳)下站位(双江)的趋势;总可转化态氮含量范围为288.54~1 123.27mg·kg-1,均值为639.40 mg·kg-1,空间分布趋势与总氮一致;TF-N中各形态氮的大小顺序为:OSF-N(有机态和硫化物结合态)IMOF-N(铁锰结合态)CF-N(碳酸盐结合态)IEF-N(离子交换态).沉积物中TF-N主要以OSF-N(50.9%)和IMOF-N(33.3%)形态存在.OSF-N很难释放,不易参与氮循环.IMOF-N受水文条件影响显著,表现为在低水位高程和下采样站位沉积物中含量更低.淹水胁迫、水体富营养化等情况下氧含量较低,相对还原条件下有利于其向水体释放.而TF-N及其形态分布在垂直深度上无显著差异.可见,三峡库区特殊调蓄水制度加速了澎溪河下游、低水位高程消落带沉积物中IMOF-N向水体的释放.  相似文献   
208.
微气泡臭氧催化氧化-生化耦合工艺深度处理煤化工废水   总被引:7,自引:1,他引:6  
刘春  周洪政  张静  陈晓轩  张磊  郭延凯 《环境科学》2017,38(8):3362-3368
采用微气泡臭氧催化氧化-生化耦合工艺对煤化工废水生化出水进行深度处理,考察耦合系统处理性能及不同臭氧投加量和进水COD量比值的影响.结果表明,微气泡臭氧催化氧化处理能够有效降解废水中难降解含氮芳香族污染物,去除部分COD并释放氨氮,显著提高废水可生化性,臭氧利用率接近100%,无需进行臭氧尾气处理;同时为生化处理提供充足溶解氧(DO),实现生化处理对COD和氨氮的进一步有效去除,生化处理无需曝气.在系统出水回流比为30%、臭氧投加量和进水COD量之比为0.44 mg·mg~(-1)的运行条件下,耦合系统处理性能较好.微气泡臭氧催化氧化处理对COD去除率为42.5%,臭氧消耗量与COD去除量比值为1.38 mg·mg~(-1),臭氧利用率为98.0%;生化处理对COD去除率为42.3%;耦合系统整体COD去除率为66.7%,最终平均出水COD浓度为91.5 mg·L~(-1),估算整体臭氧消耗量与COD去除量比值为0.68 mg·mg~(-1),具有较优的技术经济性能.  相似文献   
209.
利用干基添加比例为0~10%钙基膨润土对污泥进行了调质,通过52 d的好氧堆肥研究了调质对堆体温度、pH、水溶性盐分(EC)、有机碳、总氮、铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)的影响,并进一步分析了其对污泥脱毒(种子萌发)和重金属(Zn、Cu、Pb、Cd)钝化及雌酮(E1)消除的影响.结果表明,污泥经外加膨润土调质后,可以促进堆肥物料的热灭活无害化,能使有机碳矿化率达到15.27%~19.71%;堆肥过程中各处理堆肥pH先降低后升高,最终稳定在6.76~7.05之间,但膨润土调质堆肥pH的波动变缓;添加膨润土的堆肥EC显著低于对照处理(1 132μS·cm~(-1)),整个堆肥过程EC值随着膨润土添加比例的增加而稍有降低.堆肥过程中的总氮含量逐渐增加,但对照处理在堆肥初期存在一定的氮素损失,而污泥经过调质可减少堆肥初期氮素损失;整个堆肥中NH_4~+-N含量先增加后降低,各处理NO_3~--N均呈现出逐渐增加的趋势,表明污泥调质促进NO_3~--N的转化.虽然调质对种子发芽产生一定的抑制作用,但均不影响堆肥的腐熟,且能显著促进重金属的钝化,同时添加膨润土处理显著降低堆料E1含量,添加比例5%处理使E1含量由90.48μg·kg~(-1)降低至28.27μg·kg~(-1).研究表明,膨润土不高于5%的添加比例是适合的污泥调质措施,在污泥堆肥物料的安全化、脱毒及重金属钝化和雌酮消除方面具有较好的应用潜力.  相似文献   
210.
高含氮印染废水强化脱氮处理组合工艺   总被引:1,自引:1,他引:0       下载免费PDF全文
为考察UASB-A/LO/O(缺氧/低氧/好氧)组合工艺的实际应用效果,将该工艺应用到规模为6 000 t/d的实际工程中,考察其对高含氮印染废水处理效果,同时采用微生物高通量测序对A/LO/O工艺中的微生物菌群结构进行解析.结果表明:在前处理废水进水流量为100 m3/h,染色废水进水流量为150 m3/h,同时A/LO/O工艺污泥回流比为50%左右情况下,CODCr、NH3-N和TN的去除率分别达到91.6%、95.5%和73.5%;染色和前处理废水在改良UASB内均实现了高效厌氧氨化,染色废水厌氧出水中ρ(NH3-N)/ρ(TN)保持在80%以上,前处理废水厌氧出水保持在85%以上;调节UASB运行参数可对VFAs(挥发性脂肪酸)进行有效调控,从而为后段反硝化工艺提供高品质碳源,实现高效脱氮;A/LO/O系统对CODCr、NH3-N、TN有较好的去除效果,其脱氮性能主要靠变性菌门(Proteobateria)发挥作用,该系统中低氧池的微生物种类最为丰富且发生短程硝化反硝化,对污染物去除贡献最大,当低氧池△ρ(CODCr)/△ρ(TN)在18.6左右时,TN去除率最高,达到82%.研究显示,该组合工艺对工程中高含氮印染废水的脱氮效果良好.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号