首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   53篇
  国内免费   127篇
安全科学   49篇
废物处理   6篇
环保管理   41篇
综合类   321篇
基础理论   57篇
污染及防治   14篇
评价与监测   32篇
社会与环境   40篇
灾害及防治   23篇
  2024年   1篇
  2023年   8篇
  2022年   21篇
  2021年   19篇
  2020年   42篇
  2019年   18篇
  2018年   14篇
  2017年   19篇
  2016年   14篇
  2015年   22篇
  2014年   23篇
  2013年   23篇
  2012年   34篇
  2011年   37篇
  2010年   20篇
  2009年   50篇
  2008年   44篇
  2007年   36篇
  2006年   33篇
  2005年   26篇
  2004年   21篇
  2003年   17篇
  2002年   9篇
  2001年   11篇
  2000年   12篇
  1999年   5篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有583条查询结果,搜索用时 15 毫秒
141.
水中有机成分及其对饮用水质的影响   总被引:3,自引:0,他引:3  
微量有机污染物和氯化消毒副产物对饮用水构成直接威胁,是饮用水中要重点控制的;天然大分子有机物对水质构成间接影响,导致胶体稳定性提高、增加药耗;藻类和代谢产物影响常规处理工艺效果,对水质产生不良影响。  相似文献   
142.
13株真菌对聚β-羟基丁酸酯膜的降解特性   总被引:2,自引:0,他引:2  
从不同来源的活性污泥中分离筛选出13株可降解聚β—羟基丁酸酯(PHB)的真菌,分别编号为DS9701、DS9702、DS9703、DS9704、DS9705、DS9706、DS9707、DS9708、DS9709、DS9710、DS9711、DS9712、DS9713.对DS97系列真菌降解PHB膜的特性进行了研究.结果表明,各菌株平均降解PHB膜速率之间的差异均达到极显著水平;13个菌株对PHB膜的降解可分为四种类型,即缓慢降解—快速降解—缓慢降解;缓慢降解—快速降解;缓慢降解—等速降解;缓慢降解—中速降解—快速降解。  相似文献   
143.
赵晓祥  陈琪  庄惠生 《生态环境》2006,15(6):1185-1187
环境激素对生态的影响越来越受到人们的重视。通过赤子爱胜蚓对壬基酚的滤纸接触法毒性试验,从分子水平揭示环境污染物对蚯蚓组织的毒性影响。在壬基酚对赤子爱胜蚓(Eiseniafoetida)的急性毒性试验中,测得72hLC50为0.908μg/cm2。在系列浓度的壬基酚暴露中,过氧化氢酶(Catalase,CAT),超氧化物歧化酶(Superoxidedismutase,SOD)和谷胱甘肽硫转移酶(GlutathioneS-transferase,GST)的敏感性依次为CAT>SOD>GST。实验结果表明,这三种酶均可作为早期NP污染预警指标。  相似文献   
144.
环境荷尔蒙概述   总被引:2,自引:0,他引:2  
环境荷尔蒙对环境的污染以及对内分泌的干扰作用已经引起世界各国的广泛关注。叙述了环境荷尔蒙的概念、种类和危害,并且对环境荷尔蒙的监测分析方法进行评述。  相似文献   
145.
庄小洪 《交通环保》2001,22(3):41-43
通过列举分析目前汕头港通航环境及危险品管理,船舶防污染的现状,提出了一些加强管理,规范行为的对策。  相似文献   
146.
SBR工艺处理高含盐生活污水的研究   总被引:2,自引:0,他引:2  
针对海水利用产生的高含盐生活污水,试验采SBR工艺分别研究了不同海水比例的污水中低浓度和中浓度有机物的降解和去除规律、污泥沉降性能以及温度对含20%海水的污水中有机物降解速率的影响.试验结果表明,在高盐污水的生物处理系统中,污泥的驯化是关键的一步.海水盐度降低了有机物的降解速率和去除率,但两种浓度污水的出水CODcr浓度均在30~70mg/L之间,远远低于国家污水综合排放二级标准(GB8978-1996).海水盐度使污泥体积指数降低,污泥沉降速度加快.污水处理有机物的适宜温度是20℃左右.  相似文献   
147.
以新型填料上生物膜的微生物种群结构为研究对象,将异养脱硫细菌蜡状芽孢杆菌ZJNB-B3接种到含活性污泥和LEVAPOR新型填料的小试曝气液体反应器,研究此菌在活性污泥及在填料生物膜中的微生物多样性.在属分类水平上的物种分析结果表明,芽孢杆菌属在接种后的填料中相对丰度较高,而在活性污泥样品中相对丰度较低,其在培养了第10d的填料样品中已经达到最大相对丰度.因此该菌与新型填料的亲和性和成膜性较好.将该菌与新型填料应用于生物滴滤塔(BTF)处理屠宰污水站排放的H2S恶臭废气,风量处理能力为2000m3/h.结果表明,经该菌强化的BTF完成启动的时间比使用普通活性污泥接种的BTF缩短7d.强化的BTF在30d的稳定期试验中,当H2S进气浓度为4.92~9.54mg/m3时,对H2S去除率为98%~99%.当进气H2S在1.0~10mg/m3范围波动时,空床停留时间(EBRT)为10,21,30s时,去除率分别为94%、98%、99%以上,且受进气H2S浓度波动的影响不大.当进口负荷为0.60~1.14g/(m3·h)时,H2S去除率稳定在98%以上,H2S气体排放量低于恶臭污染物排放国家标准.  相似文献   
148.
针对矿业废弃地高背景值-历史矿业源相叠加区下土壤重金属Cd污染问题,以西南地区某历史硫磺矿业废弃地重构土壤为研究对象,采集剖面土壤共30个样品,分析测试土壤样品中镉(Cd)、铬(Cr)、镍(Ni)、砷(As)和汞(Hg),利用电镜扫描-能谱分析(SEM-EDS)和重金属形态连续提取的BCR方法,分析不同土层厚度下Cd的赋存形式,运用风险评价编码法(RAC)和次生相与原生相分布比值法(RSP)对其进行有效性评价,以及对不同理化性质下Cd各形态的变化规律进行了初步探讨.结果表明,研究区5种重金属中Cd全量的富集系数最高,达4以上;通过形貌特征可以发现,样品中存在较多的次棱角状、棱角状颗粒,不同深度下的能谱特征显示结果相似,均含有Cd、Fe、S和As等元素,Cd元素是以类质同象形式存在;对Cd进行潜在风险评价,RAC结果显示为中等风险及以下,RSP结果主要为重度污染;重金属全量是影响Cd各形态含量分布的最主要因素,其次pH、有机质和CEC,对垂直深度的土壤Cd赋存形态也表现出不同程度的影响.该研究结果可为进一步了解Cd在剖面土壤的活性、迁移规律、生物毒性和赋存形式提供科学依据.  相似文献   
149.
微塑料对水中铜离子和四环素的吸附行为   总被引:11,自引:9,他引:2  
微塑料作为载体可与水中重金属、抗生素结合进而形成复合污染,这改变了污染物原有的环境行为与危害性.微塑料与重金属及抗生素间的作用途径与机制是评价其环境风险及毒理学机制的前提.目前有关微塑料与重金属及抗生素间的相互作用机制尚不清晰.以高密度聚乙烯(HDPE)和通用级聚苯乙烯(GPPS)颗粒作为代表,研究了微塑料在单一体系和复合体系中对Cu~(2+)和四环素的吸附行为,并就相关机制进行了探讨.结果表明,单一体系中,GPPS和HDPE分别对TC和Cu~(2+)表现出更大的平衡吸附量;复合体系中,GPPS对Cu~(2+)和TC的平衡吸附量均大于HDPE,且2种微塑料的吸附能力均较单一体系有所提高.准二级动力学模型对微塑料吸附过程的描述更为合理,吸附过程可划分为表面吸附和孔内扩散2个阶段.Langmuir等温吸附模型较Freundlich等温吸附模型更符合实验情形.单一体系中,GPPS和HDPE对Cu~(2+)和TC的饱和吸附量分别为0.178、 0.257、 0.334和0.194μmol·g~(-1),而在复合体系中,相应的饱和吸附量则分别增大至0.529、 0.411、 0.471和0.341μmol·g~(-1).表面形态特征及化学官能团的不同是导致GPPS和HDPE吸附行为差异的主要原因.体系pH影响微塑料和吸附对象的存在形态及表面电性,继而影响平衡吸附量.环境温度在15~35℃范围时,提高温度不利于微塑料的吸附.Cu~(2+)和TC在共存条件下可产生协同效应,络合物的形成及相互间的桥接作用使得二者更易于被微塑料吸附.  相似文献   
150.
张丽丽  庄媛  胡春  石宝友 《环境科学学报》2020,40(12):4225-4233
多相催化氧化是一种很有前景的水深度处理技术,实际水环境中微量难降解有机污染物的去除通常受到水中共存物质如天然有机物(NOM)的影响.因此,在多相催化体系中,基于污染物与氧化媒介在催化剂表面的作用及转化过程调控催化剂的表面性质,对于复杂环境中污染物的高效靶向去除至关重要.本文主要综述了以过氧化氢、臭氧和光为媒介的多相催化氧化技术的固液微界面调控原理,以及基于固液微界面调控的水处理应用进展.重点阐述了催化剂表面性质对氧化媒介和目标污染物在表面分解和转化的影响,以及不同类型有机污染物在催化剂表面的作用原理.在此基础上,我们提出通过不同的手段极化催化剂表面,使表面电子分布不均匀,形成氧化位点和还原位点,使目标污染物失电子氧化同时活化表面吸附氧化媒介形成更多吸附态·OH,是促进复杂水环境中目标污染物高效去除的关键途径.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号