首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12366篇
  免费   483篇
  国内免费   4728篇
安全科学   816篇
废物处理   798篇
环保管理   930篇
综合类   6849篇
基础理论   2033篇
环境理论   6篇
污染及防治   4682篇
评价与监测   466篇
社会与环境   434篇
灾害及防治   563篇
  2024年   2篇
  2023年   199篇
  2022年   577篇
  2021年   479篇
  2020年   351篇
  2019年   358篇
  2018年   481篇
  2017年   559篇
  2016年   641篇
  2015年   844篇
  2014年   973篇
  2013年   1275篇
  2012年   1019篇
  2011年   1190篇
  2010年   855篇
  2009年   846篇
  2008年   888篇
  2007年   695篇
  2006年   655篇
  2005年   482篇
  2004年   351篇
  2003年   437篇
  2002年   384篇
  2001年   312篇
  2000年   344篇
  1999年   399篇
  1998年   328篇
  1997年   311篇
  1996年   295篇
  1995年   260篇
  1994年   177篇
  1993年   156篇
  1992年   113篇
  1991年   94篇
  1990年   64篇
  1989年   54篇
  1988年   44篇
  1987年   19篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Fomesafen is a diphenyl ether herbicide that has an important role in the removal of broadleaf weeds in bean and fruit tree fields. However, very little information is known about the effects of this herbicide on soil microbial community structure and activities. In the present study, laboratory experiments were conducted to examine the effects of different concentrations of fomesafen (0, 10, 100, and 500 μg/kg) on microbial community structure and activities during an exposure period of 60 days, using soil enzyme assays, plate counting, and denaturing gradient gel electrophoresis (DGGE). The results of enzymatic activity experiments showed that fomesafen had different stimulating effects on the activities of acid phosphatase, alkaline phosphatase, and dehydrogenase, with dehydrogenase being most sensitive to fomesafen. On the tenth day, urease activity was inhibited significantly after treatment of different concentrations of fomesafen; this inhibiting effect then gradually disappeared and returned to the control level after 30 days. Plate counting experiments indicated that the number of bacteria and actinomycetes increased in fomesafen-spiked soil relative to the control after 30 days of incubation, while fungal number decreased significantly after only 10 days. The DGGE results revealed that the bacterial community varied in response to the addition of fomesafen, and the intensity of these six bands was greater on day 10. Sequencing and phylogenetic analyses indicated that the six excised DGGE bands were closely related to Emticicia, Bacillus, and uncultured bacteria. After 10 days, the bacterial community exhibited no obvious change compared with the control. Throughout the experiment, we concluded that 0–500 μg/kg of fomesafen could not produce significant toxic effects on soil microbial community structure and activities.  相似文献   
972.
Anthropogenic activities have led to water quality deterioration in many parts of the world, especially in Northeast China. The current work investigated the spatiotemporal variations of water quality in the Taizi River by multivariate statistical analysis of data from the 67 sampling sites in the mainstream and major tributaries of the river during dry and rainy seasons. One-way analysis of variance indicated that the 20 measured variables (except pH, 5-day biological oxygen demand, permanganate index, and chloride, orthophosphate, and total phosphorus concentrations) showed significant seasonal (p?≤?0.05) and spatial (p?<?0.05) variations among the mainstream and major tributaries of the river. Hierarchical cluster analysis of data from the different seasons classified the mainstream and tributaries of the river into three clusters, namely, less, moderately, and highly polluted clusters. Factor analysis extracted five factors from data in the different seasons, which accounted for the high percentage of the total variance and reflected the integrated characteristics of water chemistry, organic pollution, phosphorous pollution, denitrification effect, and nitrogen pollution. The results indicate that river pollution in Northeast China was mainly from natural and/or anthropogenic sources, e.g., rainfall, domestic wastewater, agricultural runoff, and industrial discharge.  相似文献   
973.
Phosphine (PH(3)) is a natural gaseous carrier of phosphorus (P) in its geochemical cycles, and it might be important to the P balance of natural ecosystems. Paddy fields are thought to be one of the main sources responsible for the production and emission of PH(3) in to the environment. The relationships between matrix-bound PH(3) (MBP) and different P fractions, as well as selected metals were investigated to explore the possible production of MBP and its link to P cycle in the paddy soils. MBP range from 20.8 (-1) to 502 ng kg(-1) with an average of 145 ng kg(-1). Concentrations at the milk stage are significantly higher than at the jointing stage. The total P range from 333 mg kg(-1) to 592 mg kg(-1). Average P fractions decrease in the order: Ca-P (69.9%) > Organic P (16.5%) > occluded P (6.50%) > Fe-P (5.93%) > dissolved P (0.80%) > exchangeable P (0.32%) > Al-P (0.02%). Different levels of nitrogen fertilizer have little effect on the contents of MBP, P fractions and metals. A significant positive correlation between MBP and Ca-P (p = 0.002), as well as between MBP and Ca (p = 0.008) could be observed, suggesting that Ca-P mainly affects the production of MBP in the paddy soils. It is suggested that soil MBP is strongly linked to Ca-P fertilizer use because soil spiked with P-fertilizer produced an additional 758 ± 142 ng of MBP per kg of soil, compared to only 81.7 ± 12.3 ng of MBP per kg of unspiked soil. No correlations are found between MBP and other P fractions, or between MBP and Al, Fe and Mn.  相似文献   
974.
CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from ??341 to 1,193 mg m???2 h???1, and the mean value over all three forests and sampling times was 286 mg m???2 h???1. CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.  相似文献   
975.
A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02?C2.45 mg/L (model 1) and 2.13?C2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.  相似文献   
976.
A thorough understanding of groundwater recharge source, particularly its rate, is usually a prerequisite for effective water resources management. In this paper, we report the impact of Yellow River water seepage from the North Henan Plain, using both hydrogeochemical and stable isotopic analysis data. Seven Yellow River water samples, 10 groundwater samples from a river-parallel transect, and 36 groundwater samples from four different perpendicular transects to the Yellow River in the western, middle, and eastern plain were collected and analyzed. It inferred that cation exchange of Ca2+ and/or Mg2+ for Na+ occurred in groundwaters because of the dissolution of carbonate rocks. The hydrogeochemical results indicate that western piedmont lateral groundwater and the Yellow River are both important sources of groundwater recharge for the western transect of the North Henan Plain, while the former is a greater recharge source for the middle transect, and the latter is a greater recharge source for the eastern transect. Stable isotope data support Yellow River water incursion into the groundwater. The approximate distance (based on chloride concentration) from the Yellow River to border of the impact zone is17.43–23.40 km in the western plain, 52.46 km in the middle plain, and 49.82 km in the eastern plain.  相似文献   
977.
Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg?1, dry mass (dm) and 1,497 mg Zn kg?1, dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg?1, dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 +-N, NO3 ?-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88–222 g PM kg?1, dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg?1, dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44–222 g PM kg?1, dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22–44 g PM kg?1 dm, soil containing Cu and Zn.  相似文献   
978.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   
979.
Twenty-four major and trace elements and the mineralogical composition of four sediment cores along the Pearl River and estuary were analyzed using ICP-AES, ICP-MS, and X-ray diffraction (XRD) to evaluate contamination levels. The dominant minerals were quartz, kaolinite, and illite, followed by montmorillonite and feldspars, while small amounts of halite and calcite were also observed in a few samples. Cluster analysis (CA) and principal component analysis (PCA) were performed to identify the element sources. The highest metal concentrations were found at Huangpu, primarily due to wastewater treatment plant discharge and/or the surreptitious dumping of sludge, and these data differed from those of other sources. Excluding the data from Huangpu, the PCA showed that most elements could be considered as lithogenic; few elements are the combination of lithogenic and anthropogenic sources. An antagonistic relationship between the anthropogenic source metals (K, Ba, Zn, Pb, Cd, Ag, Tl, and U) and marine source metals (Na, Mg, Ti, V, and Ca) was observed. The resulting normalized Al enrichment factor (EF) indicated very high or significant pollution of Cd, Ag, Cu, Zn, Mo, and Pb at Huangpu, which may cause serious environmental effects. Conflicting results between the PCA and EF can be attributed to the background values used, indicating that background values must be selected carefully.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号