首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13527篇
  免费   608篇
  国内免费   4765篇
安全科学   967篇
废物处理   835篇
环保管理   1020篇
综合类   7642篇
基础理论   2186篇
环境理论   6篇
污染及防治   4565篇
评价与监测   560篇
社会与环境   507篇
灾害及防治   612篇
  2024年   11篇
  2023年   218篇
  2022年   638篇
  2021年   549篇
  2020年   424篇
  2019年   417篇
  2018年   539篇
  2017年   618篇
  2016年   565篇
  2015年   758篇
  2014年   1052篇
  2013年   1403篇
  2012年   1122篇
  2011年   1288篇
  2010年   937篇
  2009年   923篇
  2008年   953篇
  2007年   766篇
  2006年   731篇
  2005年   522篇
  2004年   387篇
  2003年   477篇
  2002年   433篇
  2001年   357篇
  2000年   372篇
  1999年   410篇
  1998年   335篇
  1997年   320篇
  1996年   303篇
  1995年   267篇
  1994年   182篇
  1993年   163篇
  1992年   116篇
  1991年   94篇
  1990年   66篇
  1989年   55篇
  1988年   44篇
  1987年   19篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
451.
Water use efficiency (WUE) is an important ecophysiological characteristic of plants, especially in semiarid and arid regions. At the scale of community or ecosystem, WUE is difficult to quantify because the amount of water used per unit dry mass production is a function of microclimatic variables and species composition. In this study, we analyzed corrected intrinsic water use efficiency (IWUE(s)) of grass and shrub species along the western segment of the Northeast China Transect (NECT) and the relationship between IWUE(s) and mean annual rainfall, habitat degradation status, vegetation type, and plant functional type (C3 versus C4) at 22 survey sites. Site intrinsic water use efficiency (IWUE(v)) and its relationship with the aforementioned site variables were analyzed based on species frequencies at each site. First, it was concluded that photosynthetic pathway played a very important role in determining species IWUE(s). Mean IWUE(s) for C4 species was approximately double that of C3 species. Second, mean annual rainfall, vegetation type, and site degradation status significantly affected IWUE(s) (p < 0.01). Mean IWUE(s) at degraded sites was twice as high as that at nondegraded sites. The mean IWUE(s) for meadows was significantly higher than those for other vegetation types (p < 0.05). Third, the frequency of occurrence of C4 plants explained 36% of the variance in IWUE(v) across the survey sites. The mean frequency of C4 occurrence at degraded sites was more than double that at nondegraded sites. Consequently, mean IWUE(v) at degraded sites was more than double that at nondegraded sites. Dominant C4 species in saline-alkaline areas tended to have higher intrinsic WUE than dominant C4 species in sandy shrub communities.  相似文献   
452.
453.

The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl2, FeCl3, citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl3, Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  相似文献   
454.
455.
Chen  Yujun  Guan  Bin  Wu  Xingze  Guo  Jiangfeng  Ma  Zeren  Zhang  Jinhe  Jiang  Xing  Bao  Shibo  Cao  Yiyan  Yin  Chengdong  Ai  Di  Chen  Yuxuan  Lin  He  Huang  Zhen 《Environmental science and pollution research international》2023,30(5):11246-11271
Environmental Science and Pollution Research - In recent years, with global climate change, the utilization of carbon dioxide as a resource has become an important goal of human society to achieve...  相似文献   
456.
Mineral processing operation is a critical step in any recycling process to realize liberation, separation and concentration of the target parts. Developing effective recycling methods to recover all the valuable parts from spent lithium-ion batteries is in great necessity. The aim of this study is to carefully undertake chemical and process mineralogical characterizations of spent lithium-ion batteries by coupling several analytical techniques to provide basic information for the researches on effective mechanical crushing and separation methods in recycling process. The results show that the grade of Co, Cu and Al is fairly high in spent lithium ion batteries and up to 17.62 wt.%, 7.17 wt.% and 21.60 wt.%. Spent lithium-ion batteries have good selective crushing property, the crushed products could be divided into three parts, they are Al-enriched fraction (+2 mm), Cu and Al-enriched fraction (?2 + 0.25 mm) and Co and graphite-enriched fraction (?0.25 mm). The mineral phase and chemical state analysis reveal the electrode materials recovered from ?0.25 mm size fraction keep the original crystal forms and chemical states in lithium-ion batteries, but the surface of the powders has been coated by a certain kind of hydrocarbon. Based on these results a flowsheet to recycle spent LiBs is proposed.  相似文献   
457.
ABSTRACT

Dried sclerotia of Wolfiporia extensa have been used as medicine in Asia from Eastern Han Dynasty, and also used as traditional snack called “fulingjiabing” in Beijing, China. In this paper, 18 macro and trace elements (Ag, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Se, Sr, V, and Zn) in both flesh and peel of Wolfiporia extensa from seven sites of Yunnan province in China were determined by inductively coupled plasma mass spectrometer. The average recovery rates of certified reference materials for GBW10015 (spinach leaves) ranged from 90.5 to 113%, for GBW10028 (citrus leaves) from 92.8 to 106%, and for GBW07603 (bush branch and leaves) from 83.3 to 114.6%. Generally speaking, the concentration of all elements determined was at common level. The results of this survey indicate that mineral compositions in peel were higher than in flesh. In peel, the contents of investigated trace metals in mushroom samples were found to be in the range of 1,660–13,400 µg·g?1 dry matter (dm) for Fe and 29.6–710 µg·g?1 dm for Mn. The mean contents of Cr, Cu, Rb, V, and Zn in peel were between 10 and 20 µg·g?1 dm, followed by As, Co, Li, Ni, Pb, Se, and Sr with mean contents between 1 and 10 µg·g?1 dm, while Ag, Cd, and Cs had mean contents of <1 µg·g?1 dm. In flesh, the concentration of Fe was in the range of 54–900 µg·g?1 dm, and it was 1.5–49 µg·g?1 dm for Mn, followed by Ba, Cu, Rb, and Zn in the range of 1 to 10 µg·g?1 dm, while for Ag, As, Cd, Co, Cr, Cs, Li, Ni, Pb, Se, Sr, and V it was <1 µg·g?1 dm. The concentration of toxic elements, such as As, Cd, and Pb, in both flesh and peel was below the permissible limits of World Health Organization. However, As and Pb contents in peel were higher than the limits permitted in the Chinese Pharmacopoeia. The results of principal component analysis showed that the flesh of Wolfiporia extensa from all the seven sites of the Yunnan province tend to cluster together, most probably because the origin of mineral elements in both flesh and peel is wood substrate (old and dead pine trees).  相似文献   
458.
ABSTRACT

The present study was carried out to investigate the effect of three organic matters (stalk powder, microbial fertilizer, and manure) on Leymus chinensis germination, growth, and urease activity and available nitrogen (N) in coastal saline soil. The study was conducted in a completely randomized design with eight treatments: J0V0Y0, J1V0Y0, J0V1Y0, J0V0Y1, J1V1Y0, J1V0Y1, J0V1Y1, J1V1Y1. The notations were based on the quantities of each agent added to 1 kg of coastal saline soil: J0 – no straw powder, J1 – 0.2 kg straw powder, Y0 – no manure, Y1 – 0.3 kg manure, V0 – no microbial fertilizer, V1 – 0.2 L microbial fertilizer, each in quantic repeat. L. chinensis was sown as 50 seeds per pot. Results indicated that addition of organic agents exerted a significantly enhanced germination, increase in fresh weight and elevated soil urease activity. Soil available N levels were significantly positively correlated with soil urease activity and fresh weight, but not with germination rate. It is noteworthy that the halophyte L. chinensis showed improved characteristics when grown in coastal saline soil with addition of organic amendments.  相似文献   
459.
460.

Few studies have carried out soil washing experiments using pot experiments to simulate in situ soil washing operations, particularly for alkaline soils. This study explored the effects of multiple washing operations using pot experiments on the removal efficiencies of potentially toxic metals (PTM) from alkaline farmland soil and the reuse strategy of washed soil for safe agricultural production. The results showed that the removal efficiencies of Cd, Pb, Cu, and Zn after seven washings with a mixed chelator (EDTA, GLDA, and citric acid) were 41.1%, 47.1%, 14.7%, and 26.5%, respectively, which was close to the results of the EDTA treatment. For the alkaline soil studied, the second washing with the mixed chelators most effectively removed PTM owing to the activation of them after the first washing operation. The mixed chelator more effectively increased the proportion of stable fraction of PTM and maintained soil nutrients (e.g., nitrogen content) than EDTA, indicating little disturbance of alkaline soil quality after washing with the mixed chelator. After the amendment of the washed soil, there was no visible difference in the biomass weight of crops from the soils washed with different agents, indicating that the inhibitory effect of both washing agents on plant growth was effectively alleviated. The Cd and Pb contents in Z. mays were below the threshold of Hygienical Standard for Feeds of China (GB 13078–2017) (1 and 30 mg·kg?1). Moreover, after three cropping operations, the available concentrations of PTM in the soil washed with the mixed chelator were lower than those in the soil washed with EDTA, indicating the value and potential of agricultural reuse of alkaline farmland soil washed with the mixed chelator.

Graphical abstract
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号