首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2403篇
  免费   156篇
  国内免费   802篇
安全科学   216篇
废物处理   107篇
环保管理   229篇
综合类   1452篇
基础理论   410篇
污染及防治   578篇
评价与监测   129篇
社会与环境   130篇
灾害及防治   110篇
  2024年   12篇
  2023年   39篇
  2022年   134篇
  2021年   115篇
  2020年   99篇
  2019年   79篇
  2018年   110篇
  2017年   98篇
  2016年   124篇
  2015年   126篇
  2014年   188篇
  2013年   217篇
  2012年   185篇
  2011年   197篇
  2010年   181篇
  2009年   157篇
  2008年   156篇
  2007年   137篇
  2006年   139篇
  2005年   95篇
  2004年   72篇
  2003年   96篇
  2002年   102篇
  2001年   96篇
  2000年   55篇
  1999年   67篇
  1998年   68篇
  1997年   49篇
  1996年   39篇
  1995年   25篇
  1994年   27篇
  1993年   19篇
  1992年   26篇
  1991年   7篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1983年   2篇
排序方式: 共有3361条查询结果,搜索用时 269 毫秒
951.
Mercury (Hg) in rice is drawing mounting concern since methylmercury (MeHg) was found capable of accumulating in rice. In-vitro bioaccessibility is a feasible and reliable method to assess the health effects of Hg in rice and has been utilized in a number of studies. This study was done to investigate the impact of cultivar, planting location, and cooking on the total mercury (THg) and MeHg bioaccessibility of rice, for which multiple statistical analysis methods were used to analyze the significance of their effects. The THg concentrations of rice samples taken from non-Hg contaminated areas of China were all below 15 ng/g and their MeHg concentrations were below 2 ng/g. Cooking could significantly reduce the MeHg bioaccessibility of rice because the MeHg was mainly combined with protein and the protein will be denatured during the cooking process, and then the denatured MeHg is difficult to be dissolved into the liquid phase. Indica- and japonica-type rice cultivars did not show significant differentiation in either the concentration of Hg or its bioaccessibility. However, the glutinous rice type differed significantly from the above rice types, and it showed greater bioaccessibility of THg and MeHg due to its distinct protein contents and starch properties. Planting location can affect the Hg concentration in rice and THg bioaccessibility but has a limited impact on MeHg bioaccessibility. Based on these results, two macro factors (rice cultivar, planting location) are presumed to impact Hg bioaccessibility by how they affect micro factors (i.e., Hg forms).  相似文献   
952.
Current knowledge about the transformation of total mercury and methylmercury (MeHg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter (DOM) in aerobic composting process of municipal sewage sludge were were comprehensively characterized, and the differences among the three C/N ratio (20, 26 and 30) were investigated. The main form of mercury in C/N 20 and 26 was organo-chelated Hg (F3, 46%-60%); while the main form of mercury in C/N 30 was mercuric sulfide (F5, 64%-70%). The main component of DOM in C/N 20 and 26 were tyrosine-like substance (C1, 53%-76%) while the main fractions in C/N 30 were tyrosine-like substance (C1, 28%-37%) and fulvic-like substance (C2, 17%-39%). The mercury and DOM varied significantly during the 9 days composting process. Compared to C/N 20 and 26, C/N 30 produced the less MeHg after aerobic composting process, with values of 658% (C/N 20), 1400% (C/N 26) and 139% (C/N 30) of the initial, respectively. Meanwhile, C/N 30 produced the best compost showed greater degree of DOM molecular condensation and humification. Hg fraction had been altered by DOM, as indicated by a significant correlation between mercury species and DOM components. Notably, C/N 30 should be used as an appropriate C/N ratio to control the methylation processes of mercury and degration of DOM.  相似文献   
953.
Methyl-hydroxy-cyclohexadienyl radicals (OTAs) are the key products of the photooxidation of toluene, with implications for the fate of toluene. Hence, we investigated the photooxidation mechanisms and kinetics of three main OTAs (o-OTA, m-OTA, and p-OTA) with NO2 using quantum chemical calculations as well as the fate of OTAs under the different concentration ratios of NO2 and O2. The mechanism results show that the pathway of H-abstraction by NO2 to anti-HONO (anti-H-abstraction) is more favorable than the syn-H-abstraction pathway, because the strong interaction between OTAs and NO2 is formed in the transition states of the anti-H-abstraction pathways. The branching ratios of the anti-H-abstraction pathways are more than 99% in the temperature range of 216−298 K. The total rate constant of the OTA-NO2 reaction is 9.9 × 10−12 cm3/(molecule∙sec) at 298 K, which is contributed about 90% by o-OTA + NO2, and the main products are o-cresol and anti-HONO. The half-lives of the OTA-NO2 reaction in some polluted areas of China are 35 times longer than those of the OTA-O2 reaction. In the atmosphere, the NO2- and O2- initiated reactions of OTAs have the same ability to form cresols as [NO2] is up to 142.1 ppmV, which is impossible to achieve. It implies that under the experimental condition, the [NO2]/[O2] should be controlled to be less than 7.8 × 10−5 to simulate real atmospheric oxidation of toluene. Our results reveal that for the photooxidation of toluene, the yield of cresol is not affected by the concentration of NO2 under the atmospheric environment.  相似文献   
954.
Antimony (Sb) is a recognized priority pollutant with toxicity that is influenced by its migration and transformation processes. Oxidation of Fe(II) to Fe(III) oxides, which is a common phenomenon in the environment, is often accompanied by the formation of Mn(III/IV) and might affect the fate of Sb. In this study, incorporated Mn(III) and sorbed/precipitated Mn(III/IV) associated with lepidocrocite were prepared by adding Mn(II) during and after Fe(II) oxidation, respectively, and the effects of these Mn species on Sb fate were investigated. Our results indicated that the association of these Mn species with lepidocrocite obviously enhanced Sb(III) oxidation to Sb(V), while concomitantly inhibiting Sb sorption due to the lower sorption capacity of lepidocrocite for Sb(V) than Sb(III). Additionally, Mn oxide equivalents increased in the presence of Sb, indicating that Sb oxidation by Mn(III/IV) associated with lepidocrocite was a continuous recycling process in which Mn(II) released from Mn(III/IV) reduction by Sb(III) could be oxidized to Mn(III/IV) again. This recycling process was favorable for effective Sb(III) oxidation. Moreover, Sb(V) generated from Sb(III) oxidation by Mn(III/IV) enhanced Mn(II) sorption at the beginning of the process, and thus favored Mn(III/IV) formation, which could further promote Sb(III) oxidation to Sb(V). Overall, this study elucidated the effects of Mn(III/IV) associated with lepidocrocite arisen from Fe(II) oxidation on Sb migration and transformation and revealed the underlying reaction mechanisms, contributing to a better understanding of the geochemical dynamics of Sb.  相似文献   
955.
Methylmercury (MeHg) production in paddy soils and its accumulation in rice raise global concerns since rice consumption has been identified as an important pathway of human exposure to MeHg. Sulfur (S) amendment via fertilization has been reported to facilitate Hg methylation in paddy soils under anaerobic conditions, while the dynamic of S-amendment induced MeHg production in soils with increasing redox potential remains unclear. This critical gap hinders a comprehensive understanding of Hg biogeochemistry in rice paddy system which is characterized by the fluctuation of redox potential. Here, we conducted soil incubation experiments to explore MeHg production in slow-oxidizing paddy soils amended with different species of S and doses of sulfate. Results show that the elevated redox potential (1) increased MeHg concentrations by 10.9%−35.2%, which were mainly attributed to the re-oxidation of other S species to sulfate and thus the elevated abundance of sulfate-reducing bacteria, and (2) increased MeHg phytoavailability by up to 75% due to the reductions in acid volatile sulfide (AVS) that strongly binds MeHg in soils. Results obtained from this study call for attention to the increased MeHg production and phytoavailability in paddy soils under elevated redox potentials due to water management, which might aggravate the MeHg production induced by S fertilization and thus enhance MeHg accumulation in rice.  相似文献   
956.
The coronavirus (COVID-19) pandemic is disrupting the world from many aspects. In this study, the impact of emission variations on PM2.5-bound elemental species and health risks associated to inhalation exposure has been analyzed based on real-time measurements at a remote coastal site in Shanghai during the pandemic. Most trace elemental species decreased significantly and displayed almost no diel peaks during the lockdown. After the lockdown, they rebounded rapidly, of which V and Ni even exceeded the levels before the lockdown, suggesting the recovery of both inland and shipping activities. Five sources were identified based on receptor modeling. Coal combustion accounted for more than 70% of the measured elemental concentrations before and during the lockdown. Shipping emissions, fugitive/mineral dust, and waste incineration all showed elevated contributions after the lockdown. The total non-carcinogenic risk (HQ) for the target elements exceeded the risk threshold for both children and adults with chloride as the predominant species contributing to HQ. Whereas, the total carcinogenic risk (TR) for adults was above the acceptable level and much higher than that for children. Waste incineration was the largest contributor to HQ, while manufacture processing and coal combustion were the main sources of TR. Lockdown control measures were beneficial for lowering the carcinogenic risk while unexpectedly increased the non-carcinogenic risk. From the perspective of health effects, priorities of control measures should be given to waste incineration, manufacture processing, and coal combustion. A balanced way should be reached between both lowering the levels of air pollutants and their health risks.  相似文献   
957.
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.  相似文献   
958.
The presence of SO2 display significant effect on the mercury (Hg) adsorption ability of carbon-based sorbent. Yet the adsorption and oxidation of SO2 on carbon with oxygen group, as well as the roles of different sulfur oxide groups in Hg adsorption have heretofore been unclear. The formation of sulfur oxide groups by SO2 and their effects on Hg adsorption on carbon was detailed examined by the density functional theory. The results show that SO2 can be oxidized into SO3 by oxygen group on carbon surface. Both C-SO2 and C-SO3 can improve Hg adsorption on carbon site, while the promotive effect of C-SO2 is stronger than C-SO3. Electron density difference analyses reveal that sulfur oxide groups enhance the charge transfer ability of surface unsaturated carbon atom, thereby improving Hg adsorption. The experimental results confirm that surface active groups formed by SO2 adsorption is more active for Hg adsorption than the groups generated by SO3.  相似文献   
959.
Co-pyrolysis of coal and seaweed can not only effectively decrease the carbon footprint but also improve the quality and output of coal pyrolysis products, however, the influence of seaweed on thermal releasing behaviors of mercury during co-pyrolysis process are still unclear. In this work, the chlorella and Guizhou bituminous coal were mixed and used to reveal the mercury release behavior during co-pyrolysis by the temperature programmed pyrolysis experiments, thermogravimetric and differential thermogravimetric analysis (TG-DTG) and thermogravimetry-mass spectrometry (TG-MS) methods, offering a sufficient explanation on the control technology of mercury pollutants in co-pyrolysis. The results exhibited that a large amount of reducing gases such as CO, H2 and H2O were generated in chlorella at the temperature range of 100-500°C, which was favorable for the transformation from oxidized mercury to elemental mercury, thus remarkably increased the release of elemental mercury in the raw coal sample. The mixed chlorella also significantly lowered the decomposition temperature range (from 400-600 to 300-400°C) of pyrite-bound mercury and decreased the decomposition temperatures of the pyrite-bound mercury species. Additionally, in the co-pyrolysis about 91.82% of mercury was released into the gas phase below 400°C and was 13.77% higher than that of in individual pyrolysis of coal.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号