首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2127篇
  免费   18篇
  国内免费   24篇
安全科学   55篇
废物处理   69篇
环保管理   256篇
综合类   472篇
基础理论   440篇
环境理论   1篇
污染及防治   634篇
评价与监测   110篇
社会与环境   117篇
灾害及防治   15篇
  2023年   19篇
  2022年   19篇
  2021年   31篇
  2020年   23篇
  2019年   28篇
  2018年   52篇
  2017年   56篇
  2016年   65篇
  2015年   73篇
  2014年   80篇
  2013年   91篇
  2012年   88篇
  2011年   138篇
  2010年   118篇
  2009年   135篇
  2008年   121篇
  2007年   125篇
  2006年   89篇
  2005年   64篇
  2004年   91篇
  2003年   57篇
  2002年   76篇
  2001年   71篇
  2000年   40篇
  1999年   19篇
  1998年   22篇
  1997年   28篇
  1996年   22篇
  1995年   33篇
  1994年   26篇
  1993年   8篇
  1992年   19篇
  1991年   27篇
  1990年   14篇
  1989年   19篇
  1988年   7篇
  1985年   5篇
  1984年   8篇
  1982年   13篇
  1981年   10篇
  1980年   5篇
  1979年   11篇
  1970年   10篇
  1968年   5篇
  1967年   5篇
  1966年   5篇
  1965年   8篇
  1964年   5篇
  1960年   6篇
  1956年   5篇
排序方式: 共有2169条查询结果,搜索用时 312 毫秒
661.
Vegetation fire emissions and their impact on air pollution and climate   总被引:1,自引:0,他引:1  
Gaseous and particulate emissions from vegetation fires substantially modify the atmospheric chemical composition, degrade air quality and can alter weather and climate. The impact of vegetation fire emissions on air pollution and climate has been recognised in the late 1970s. The application of satellite data for fire-related studies in the beginning of the 21th century represented a major break through in our understanding of the global importance of fires. Today the location and extent of vegetation fires, burned area and emissions released from fires are determined from satellite products even though many uncertainties persist. Numerous dedicated experimental and modeling studies contributed to improve the current knowledge of the atmospheric impact of vegetation fires. The motivation of this paper is to give an overview of vegetation fire emissions, their environmental and climate impact, and what improvements can be expected in the near future.  相似文献   
662.
This paper evaluates the ranking of 21 priority air pollutants with three indicator schemes: environmental pressure indicator (EPI), environmental quality indicator (EQI), and human health effect indicator (HEI). The EPI and EQI compare the emissions and concentrations with the target emissions and target concentrations, respectively. The HEI comprehends the steps from cause (i.e. national emissions) to effect (i.e. human health effects), and is the total human health burden, expressed in Disability Adjusted Life Years per year of exposure (DALYs year?1). We estimated a health burden in the Netherlands of 41 × 103 DALYs year?1 caused by Dutch air emissions of PM10 and its precursors in the year 2003. The burden due to 17 carcinogenic substances emitted to air, was much lower (140 DALYs year?1). In contrast, when the same substances were evaluated regarding environmental pressure and environmental quality, carbon tetrachloride (pressure) and benzo[a]pyrene (quality) were of highest importance, whereas the importance of PM10 was substantially lower. This result is remarkable, because for the majority of substances evaluated, the target concentrations and target emissions are based on preventing human health damage. The differences in relevance are explained by the different weighting of interests in the indicators. The HEI is based on concentration–response relations, whereas the EPI and EQI also depend on other, policy-based, principles and on technical feasibility. Therefore, to effectively prioritize emission reduction measures in policy-making, substances should not only be evaluated as to whether emission targets and environmental quality targets are reached, but they should be evaluated regarding their human health impact as well. In this context, the HEI is a suitable indicator to evaluate the human health impact.  相似文献   
663.
This paper describes and applies EDEN-E, an operational method for the environmental evaluation of dairy farms based on the life cycle assessment (LCA) conceptual framework. EDEN-E requires a modest amount of data readily available on-farm, and thus can be used to assess a large number of farms at a reasonable cost. EDEN-E estimates farm resource use and pollutant emissions mostly at the farm scale, based on-farm-gate balances, amongst others. Resource use and emissions are interpreted in terms of potential impacts: eutrophication, acidification, climate change, terrestrial toxicity, non-renewable energy use and land occupation. The method distinguishes for each total impact a direct component (impacts on the farm site) and an indirect component (impacts associated with production and supply of inputs used). A group of 47 dairy farms (41 conventional and six organic) was evaluated. Expressed per 1000 kg of fat-and-protein-corrected milk, total land occupation was significantly larger for organic than for conventional farms, while total impacts for eutrophication, acidification, climate change, terrestrial toxicity, and non-renewable energy use were not significantly different for the two production modes. When expressed per ha of land occupied all total impacts were significantly larger for conventional than organic farms. This study largely confirms previously published findings concerning the effect of production mode on impacts of dairy farms. However, it strikingly reveals that, for the set of farms examined, the contribution of production mode to overall inter-farm variability of impacts was minor relative to inter-farm variability within each of the two production modes examined. The mapping of impact variability through EDEN-E opens promising perspectives to move towards sustainable farming systems by identifying the structural and management characteristics of the farms presenting the lowest impacts.  相似文献   
664.
Traffic mortality and the role of minor roads   总被引:1,自引:0,他引:1  
Roads have large impacts on wildlife, as they form one of the principal causes of mortality, and disturbance and fragmentation of habitat. These impacts are mainly studied and mitigated on major roads. It is, however, a widespread misconception that most animals are killed on major roads. In this paper, we argue that minor roads have a larger impact on wildlife with respect to habitat destruction, noise load and traffic mortality. We use data on traffic related deaths in badgers (Meles meles) in The Netherlands to illustrate that traffic mortality is higher on minor roads. We ask for a more extensive investigation of the environmental impacts of minor roads. Moreover, we argue that the success of mitigation on roads drastically increases when both major and minor roads are integrated in the planning of traffic flows. Therefore, we propose a strategy based on the concept of a "traffic-calmed area". Traffic-calmed areas create opportunities for wildlife by decreasing limitations for animal movement. We ask for further studies to estimate what size traffic-calmed areas should be to maintain minimum viable animal populations.  相似文献   
665.
Spatial planning is increasingly regarded as an important instrument to reduce flood consequences. Nevertheless, there are very few studies that show why local planning authorities do or do not systematically use spatial planning in advance to mitigate flood risks. This paper explores flood reduction strategies in local planning practices in the Netherlands. It also explores why spatial planning was or was not used to reduce flood consequences. The arguments for the use or non-use of planning mainly referred to requirements from other governmental bodies and the perceived role and the related responsibility of local planning authorities, previous disaster experience, and previous experience with spatial planning for flood risk management.  相似文献   
666.
In the evaluation of potentially adverse effects oforganic chemicals such as pesticides on theenvironment the atmosphere may play an important role.After its release to the atmosphere the chemical willbe transported/dispersed in the atmosphere and finallyit will be removed either by atmospheric-chemicaldestruction or by deposition to the underlying soil orsurface water. In a risk assessment decision supportsystem both ambient concentrations and depositionfluxes must be known to evaluate the risk of directexposure (inhalation) or the risk of soil and watercontamination caused by deposition. This paperdiscusses the use of atmospheric dispersion models insuch risk assessment decision support systems.  相似文献   
667.
The European Community asks its Member States to provide a comprehensive and coherent overview of their groundwater chemical status. It is stated that simple conceptual models are necessary to allow assessments of the risks of failing to meet quality objectives. In The Netherlands two monitoring networks (one for agriculture and one for nature) are operational, providing results which can be used for an overview. Two regression models, based upon simple conceptual models, link measured nitrate concentrations to data from remote sensing images of land use, national forest inventory, national cattle inventory, fertiliser use statistics, atmospheric N deposition, soil maps and weather monitoring. The models are used to draw a nitrate leaching map and to estimate the size of the area exceeding the EU limit value in the early 1990s. The 95% confidence interval for the fraction nature and agricultural areas where the EU limit value for nitrate (50 mg/l) was exceeded amounted to 0.77–0.85 while the lower 97.5% confidence limit for the fraction agricultural area where the EU limit value was exceeded amounted to 0.94. Although the two conceptual models can be regarded as simple, the use of the models to give an overview was experienced as complex.  相似文献   
668.
The exposure to some chemicals can lead to hormone disrupting effects. Presently, much attention is focused on so-called xeno-estrogens, synthetic compounds that interact with hormone receptors causing a number of reactions that eventually lead to effects related to reproduction and development. The current study was initiated to investigate the presence of a number of such compounds in precipitation as a follow-up on a previous study in which pesticide concentrations in air and precipitation were determined. Rainwater samples were collected at about 50 locations in The Netherlands in a four week period. The samples were analysed for bisphenol-A, alkylphenols and alkylphenol ethoxylates, phthalates, flame retardants and synthetic musk compounds. The results clearly indicated the presence of these compounds in precipitation. The concentrations ranged from the low ng l(-1) range for flame retardants to several thousands of ng l(-1) for the phthalates. Bisphenol-A was found in 30% of the samples in concentrations up to 130 ng l(-1), while alkylphenols and alkylphenol ethoxylates were found in virtually all locations in concentrations up to 920 ng l(-1) for the individual compounds. Phthalates were by far the most abundant xeno-estrogens in the precipitation samples and were found in every sample. Di-isodecyl phthalate was found in a surprisingly high concentration of almost 100 000 ng l(-1). Polybrominated flame retardants were found in the low ng l(-1) range and generally in less than 20% of the samples. Noticeable was the finding of hexabromocyclododecane, a replacement for the polybrominted diphenyl ethers at one location in a concentration of almost 2000 ng l(-1). Finally, as expected, synthetic musk compounds were detected in almost all samples. This is especially true for the polycyclic musks HHCB and AHTN. Nitro musks were found, but only on a few locations. Kriging techniques were used to calculate precipitation concentrations in between actual sampling locations to produce contour plots for a number of compounds. These plots clearly show located emission sources for a number of compounds such as bisphenol-A, nonylphenol ethoxylate, phthalates and AHTN. On the contrary, the results for HHCB and some phthalates indicated diffuse emission patterns, probably as the result of the use of consumer products containing these compounds.  相似文献   
669.
Is nitrate harmful to humans? Are the current limits for nitrate concentration in drinking water justified by science? There is substantial disagreement among scientists over the interpretation of evidence on the issue. There are two main health issues: the linkage between nitrate and (i) infant methaemoglobinaemia, also known as blue baby syndrome, and (ii) cancers of the digestive tract. The evidence for nitrate as a cause of these serious diseases remains controversial. On one hand there is evidence that shows there is no clear association between nitrate in drinking water and the two main health issues with which it has been linked, and there is even evidence emerging of a possible benefit of nitrate in cardiovascular health. There is also evidence of nitrate intake giving protection against infections such as gastroenteritis. Some scientists suggest that there is sufficient evidence for increasing the permitted concentration of nitrate in drinking water without increasing risks to human health. However, subgroups within a population may be more susceptible than others to the adverse health effects of nitrate. Moreover, individuals with increased rates of endogenous formation of carcinogenic N-nitroso compounds are likely to be susceptible to the development of cancers in the digestive system. Given the lack of consensus, there is an urgent need for a comprehensive, independent study to determine whether the current nitrate limit for drinking water is scientifically justified or whether it could safely be raised.  相似文献   
670.
Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号