首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   12篇
  国内免费   17篇
安全科学   38篇
环保管理   4篇
综合类   48篇
基础理论   11篇
污染及防治   5篇
评价与监测   18篇
社会与环境   2篇
灾害及防治   1篇
  2024年   2篇
  2023年   9篇
  2022年   6篇
  2021年   7篇
  2020年   3篇
  2019年   15篇
  2018年   12篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   9篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
21.
殷芳芳  张悦 《环境工程》2018,36(3):24-27
双氯芬酸(DFC)作为消炎止痛药物被广泛使用,从而在环境中大量释放。探究了DFC对生物除磷的影响及其机理。结果表明低浓度DFC对生物除磷影响不明显,而高浓度DFC会严重抑制生物除磷。当ρ(DFC)为5 mg/L时,生物除磷效率仅为51%。研究发现高浓度DFC可抑制厌氧释磷,好氧吸磷以及胞内聚合物聚羟基烷酸酯(PHA)的合成。此外,高浓度DFC对生物除磷关键酶具有严重抑制作用。当ρ(DFC)为5 mg/L,反应系统中聚磷菌(PAO)的相对比例仅为19%,远小于空白实验组。  相似文献   
22.
亚硝酸盐积累对A~2O工艺生物除磷的影响   总被引:1,自引:1,他引:0  
曾薇  李磊  杨莹莹  张悦  彭永臻 《环境科学》2010,31(9):2105-2112
常温条件下,通过控制好氧区DO浓度为0.3~0.5 mg/L,同时增大系统内回流比以降低系统好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2O工艺中成功启动并维持了短程硝化反硝化.但随着系统出水亚硝酸盐含量的升高,系统对磷的去除效果逐渐恶化.当好氧区亚硝酸盐浓度19 mg/L时,系统出水磷浓度大于进水磷浓度,系统处于净释磷状态.通过对原水COD浓度、反应区温度、pH值、游离亚硝酸浓度(free nitrous acid,FNA)等分析,表明碳源不足及短程硝化引起的亚硝酸盐积累影响了聚磷菌厌氧释磷和好氧吸磷;尤其是好氧区较高的FNA浓度(HNO2-N 0.002~0.003 mg/L)对聚磷菌好氧吸磷的抑制是导致系统除磷效果恶化的直接原因.通过外投碳源提高原水COD浓度,提高了聚磷菌厌氧释磷合成PHA的能力;同时增强了系统的反硝化能力,降低好氧区亚硝酸盐浓度,从而降低FNA对聚磷菌好氧吸磷的抑制程度,系统的除磷性能可迅速恢复;系统对磷的去除率可达96%以上.  相似文献   
23.
MgO催化臭氧氧化降解苯酚机理研究   总被引:5,自引:2,他引:3  
王兵  周鋆  任宏洋  张悦  刘璞真 《环境科学学报》2016,36(11):4009-4016
对氧化镁(MgO)催化臭氧氧化降解苯酚的机理进行了探讨,并验证其与现有的3种催化臭氧氧化机理的吻合性.同时,研究了羟基自由基(·OH)抑制剂对苯酚去除效果的影响,·OH的产生量,以及臭氧在该体系中的存在位置及苯酚在该体系中的作用.结果表明,O_3和MgO/O_3两种反应体系中都存在·OH,MgO/O_3体系中的·OH是O_3体系中的2.14倍.O_3和MgO/O_3体系中的·OH与臭氧浓度的比值分别为1.47×10~(-9)和3.15×10~(-9).苯酚在MgO催化臭氧氧化体系中起到了促进臭氧吸附在MgO表面的作用,臭氧吸附到MgO表面后,分解产生·OH,一部分释放在溶液中降解苯酚,一部分则留在其表面增加表面羟基密度.  相似文献   
24.
烷基苯磺酸钠对水生动物的生物效应研究   总被引:2,自引:0,他引:2  
本文通过洗涤剂的主要成分—烷基苯磺酸钠对大型蚤和鲤鱼的毒性试验,说明烷基苯磺酸钠的毒性属中等。对大型蚤24hEC50为7.23mg/L,48hEC50为3.83mg/L;对鲤鱼48hLC50为3.74mg/L,96hLC50为2.23mg/L。鲤鱼生活在0.5mg/L的烷基苯磺酸钠溶液中,15d就能引起鳃的损伤。  相似文献   
25.
张悦 《安全》2007,28(9):57-58
一、上半年火灾概况 2007年1月1日至6月30日,全市共发生火灾5488起,死10人,伤31人,直接财产损失425万元.与去年同期相比,火灾起数减少195起,降幅3.4%;死亡减少22人,降幅68.8%;伤人减少13人,降幅29.5%;直接财产损失减少283万元,降幅40%.全市火灾形势稳中有降.  相似文献   
26.
近年来,我国海洋保护区生态环境监测工作逐年加强,监测技术标准稳步发展,监测能力建设逐步推进,已在海洋保护区监管工作中发挥了重要作用。当前一些发达国家在海洋生态环境监测方面更加注重监测的制度建设,在形式上已步入“天-空-海、水面-水体-海底”立体监测时代。我国应借鉴国外的先进经验,着力构建和完善“天空地一体化”海洋保护区生态环境监测体系,加快推进海洋保护区生态环境监测标准化进程,加强海洋保护区信息共享机制建设,为我国海洋保护区生态环境监测工作的开展及海洋保护区监管工作提供有力支撑。  相似文献   
27.
浮式储存和再气化装置(FSRU)运行过程中易导致火灾爆炸等事故的发生,为有效评估FSRU作业过程火灾爆炸危险性,采用火灾爆炸危险指数评估法,对运用FSRU的某浮式LNG接收终端进行危险性评估;选取LNG运输船与FSRU装料作业等9个单元,研究确定了一般工艺危险性系数、特殊工艺危险性系数、安全措施补偿系数等参数,得出了补偿前后的火灾爆炸危险性指数,有效评估了FSRU作业过程火灾爆炸危险性,并基于研究结果提出了保障FSRU作业安全的对策措施与建议。研究结果表明,安全措施补偿前,缘于LNG/NG本身的火灾危险性和数量较大,能量高度集中,LNG运输船与FSRU装料作业等单元的火灾爆炸危险等级均达到了“非常大”;在采取了一系列的安全措施补偿后,火灾爆炸危险指数降低了3/5左右。这对系统深入地研究FSRU作业安全具有较重要的理论意义和实际应用价值。  相似文献   
28.
南京2013年冬季三级分粒径雾水化学特征   总被引:2,自引:0,他引:2  
为研究南京冬季不同粒径雾滴的化学成分的特征,利用three-stage CASCC主动式分档雾水采集器,于2013年12月7日~12月9日南京郊区发生浓雾期间,分时段采集三级分档雾水样本,分档粒径为4~16μm(三级)、16~22μm(二级)、>22μm(一级),共计23个分档雾水样本;用瑞士万通850professional IC型色谱仪器测定水溶性阴、阳离子浓度,分析探讨了三级分粒径雾水中阴、阳离子组分的分布特征,不同粒径雾滴中阴、阳离子浓度的相关性,雾水离子浓度与污染气体以及微物理之间的关系.结果表明,南京雾水的pH值多呈酸性,雾水中的各离子成分分布都与雾滴的大小存在着尺度依赖性关系,小雾滴与大雾滴相比,小雾滴中主要离子成分浓度(NH4+,NO3-,SO42-)高、pH值小且电导率(EC)值高.同时南京雾水中的各离子浓度呈现出夜间高白天低.统计分析显示,南京雾过程中雾水组分的变化,主要源于污染源的贡献差异.结合雾滴谱和污染气体资料分析得出,雾水化学组成的变化与微物理特征以及空气中污染气体有关.  相似文献   
29.
A2O工艺处理生活污水短程硝化反硝化的研究   总被引:6,自引:2,他引:4       下载免费PDF全文
在常温条件下,采用A2O工艺处理低C/N比实际生活污水,通过控制好氧区DO为0.3~0.5mg/L以及增大系统内回流比以降低好氧实际水力停留时间(AHRT),成功启动并维持了短程硝化反硝化;系统亚硝态氮积累率稳定维持在90%左右.在C/N比仅为2.34的情况下,短程硝化系统对总氮(TN)的去除率高达75.4%.通过对不同碳源类型、不同硝化类型以及不同DO水平下A2O系统脱氮效率的比较研究发现,低氧短程硝化反硝化阶段与外加碳源的全程硝化反硝化阶段的TN去除率相当.同时研究表明,低DO运行并不会导致A2O工艺发生污泥膨胀.当接种污泥为膨胀污泥时,控制DO在0.3~0.5mg/L反而有助于改善污泥沉降性能和出水水质.  相似文献   
30.
通过分析重庆市主城区2015~2019年O3浓度和气象要素观测数据,发现主城区O3超标日数、超标日O3中位值和90百分位浓度值均呈现逐年升高趋势,O3与温度成正相关、与相对湿度成负相关,高O3浓度对应每日最高温度区间为35℃以上以及相对湿度区间70%以下.采用T-mode主成分分析法(PCT)对2015~2019年的4~9月850hPa低层位势高度场和风场进行分型,总结出重庆市O3污染期间主要有8种天气类型,其中有利于出现高浓度O3现象的天气类型分别是低压西北侧型(T1)、低压后部型(T4)和高压西侧(T3),对应O3平均超标率分别为34.6%、17.0%和14.2%.利用HYSPLIT4模型后向轨迹聚类方法和潜在源贡献算法(PSCF),计算得到O3污染日的气团主要以中短距离输送为主,主要传输轨迹来自北、东北、南以及西南四个方向,从2015~2019年,主要污染来源有一个明显的从北转南的趋势,O3污染的潜在源贡献分析结果与全市工业源NOx、VOCs排放量空间分布的一致性较高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号