首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
  国内免费   9篇
安全科学   17篇
废物处理   1篇
环保管理   11篇
综合类   39篇
基础理论   3篇
污染及防治   2篇
评价与监测   2篇
社会与环境   4篇
灾害及防治   2篇
  2024年   1篇
  2023年   6篇
  2022年   6篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   2篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2007年   2篇
  2003年   2篇
  2002年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
71.
基于新发展理念构建制造业高质量发展综合评价体系,运用熵值—TOPSIS模型测度综合指数,结合修正后引力模型与社会网络分析法,对长江经济带制造业高质量发展空间关联结构及其效应进行实证研究。结果表明:(1)长江经济带制造业高质量发展存在显著的空间分异及非均衡分布特征。(2)空间关联结构由“单节点发展模式”演化为“点轴发展模式”,空间溢出效应和辐射带动效应显著。(3)整体网络特征向网状化、稠密化、纵深化发展;个体网络特征显示,上海、南京、苏州等城市为核心扩散点,网络向均衡化和片区化发展,且形成了“由东向西扩展,由沿海向内陆延伸”的“核心-半边缘-边缘”结构特征。(4)时空距离、社会消费品零售总额、制造业从业人员数差异是影响长江经济带制造业高质量发展空间关联结构特征的重要因素。  相似文献   
72.
基于2021年运城市城区站点全年VOCs观测数据,对运城市四季VOCs体积分数、组分特征、来源及臭氧形成敏感物种进行分析.结果表明,运城市城区φ(VOCs)年均值为(32.1±24.2)×10-9,处于全国中等水平,四季φ(VOCs)均值从高到低依次为:冬季(46.3×10-9)>秋季(35.5×10-9)>春季(25.6×10-9)>夏季(21.2×10-9),烷烃和OVOCs占比最高,二者贡献了运城市69.0%~80.4%的TVOCs,春夏季OVOCs占比更高(41%~43%)而秋冬季烷烃占比更高(42%~43%),主要受到源排放变化的影响.机动车源、LPG/NG源、工业源和燃烧源是运城市城区VOCs的主要来源,四季贡献率最高的分别为机动车源(春季,28.5%)、二次源+燃烧源(夏季,29.0%)、LPG/NG源(秋季,30.4%)和燃煤源(冬季,27.3%).运城市夏季臭氧形成处于过渡区,其他季节处于VOC控制区,臭氧生成对烯烃(异戊二烯、乙烯和丙烯)、OVOCs(乙醛、丙醛、丙烯醛、正丁醛)和芳烃(二甲苯、甲苯、苯)最敏感,其中冬季对乙烯最敏感,其他季节对异戊二烯最敏感,应对这些敏感物种相关的一次排放源进行减排以实现臭氧浓度改善的目标.  相似文献   
73.
胞外酶活性是土壤中石油污染物降解的关键环节,也是土壤微生物养分利用的重要指标.为理解石油开发区土壤自然恢复过程中微生物胞外酶介导的生物地球化学循环机制,以黄土高原石油开发形成的油井迹地为研究对象,采集不同自然恢复年限油井迹地土壤,测定土壤的理化性质和β-1,4-葡萄糖苷酶(BG)、亮氨酸氨基肽酶(LAP)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)和碱性磷酸酶(ALP)等4种酶活性,分析土壤酶活性和酶计量比的变化及其关键的环境驱动因子.结果表明:(1)土壤总石油烃从恢复1年到恢复20年显著下降了54%;随着恢复年限增加,土壤pH、容重显著下降,而土壤有机碳、全氮、硝态氮显著升高,铵态氮、全磷变化不显著;土壤碳磷比和氮磷比显著升高但碳氮比显著下降.(2)土壤BG活性、酶活性碳氮比和碳磷比显著下降,而NAG、LAP、ALP活性和酶活性氮磷比显著升高;不同恢复年限酶计量学的向量长度和向量角度分别为1.87-1.19°和53.64-47.93°,均随恢复年限显著下降,表明土壤微生物受碳和磷限制程度逐渐减弱.(3)土壤总石油烃、碳氮含量、pH、容重等指标对土壤酶活性及其计量学特征有显著影响,尤...  相似文献   
74.
气溶胶光学厚度(AOD)是气溶胶最重要的参数之一,现有的遥感AOD产品受云、积雪等因素的影响空间缺失严重,因此,生成空间覆盖完整的AOD具有重要意义.本文融合MODIS的MAIAC AOD和Himawari-8的AHI AOD,结合气象数据和高程数据,提出一种集成反距离权重插值(IDW)和CatBoost模型的时空连续AOD重构方法(命名为IDW-CatBoost).将此方法应用于京津冀和台湾岛的AOD重构,并与IDW、CatBoost方法对比,重构结果利用地基监测AERONET AOD进行验证,其中,京津冀的验证数为352个,台湾岛的验证数为641个.结果表明:在空间分布上,IDW AOD存在星点状特征,CatBoost、IDW-CatBoost的AOD具有空间连续分布的纹理特征;精度上,经地基监测AERONET AOD验证,京津冀地区IDW AOD与IDW-CatBoost AOD接近;台湾岛IDW-CatBoost AOD相比于IDW、CatBoost结果,R2分别提高了10%和5%.经过多传感器AOD融合,与单传感器AHI L2、L3、MAIAC AOD相比,IDW-CatBo...  相似文献   
75.
76.
以Tröger base (TB)和磺化度为20%的磺化聚砜(SPSF)为共混材料,N-甲基-2-吡咯烷酮(NMP)为溶剂,乙二醇单甲醚(EGM)为致孔剂,去离子水为凝固浴,采用非溶剂致相分离法(NIPS)制备了一种新型的SPSF/TB共混超滤膜,考察了共混比对膜结构、水接触角、孔隙率、水通量、BSA截留率和抗污染性能的影响.结果表明,共混之后原有的中性胺及磺酸反应生成了相应的铵盐及磺酸根,表面接触角得以降低,亲水性增强,水通量增加,显著改善了膜的抗污染能力;此外,SPSF/TB膜结构上变成了梯度海绵孔结构,特别是较大共混比时因有机高分子盐的形成,聚合物交联呈现了独特的网状结构.与纯TB膜相比,SPSF/TB3~15膜水通量JWC达到274.92~343.21L/(m2·h)(操作压力为0.1MPa),通量恢复率值(FRR)达到61.11%~67.45%,分别提升了42.88%~78.37%和67.4%~84.8%.在最优条件下,SPSF/TB5对废水中的乳化油截留率可达到98.52%以上,循环3次后水通量和FRR分别趋于199.1L/(m2·h)和61.6%.  相似文献   
77.
通过现场的调研与事故树分析相结合的手段对某厂聚乙烯醇车间聚合罐区火灾爆炸事故的危险因素进行了识别与分析.以该罐区可能发生的火灾爆炸事故作为顶上事件,对可能引发顶上事件的21个基本事件及一个条件事件构建事故树,利用最小割集、最小径集及结构重要性计算手段进行事故风险程度分析,从而确定醋酸乙烯暴聚是聚合罐区的首要危险源,而促发醋酸乙烯暴聚的物料长时间停留、气相氧含量过高、温度控制失效、阻聚剂含量不足等四个基本事件是导致聚合罐区火灾爆炸事故的最危险因素.本文对以上聚合罐区发生火灾爆炸事故的风险因素进行详细定性分析,并在此基础上有针对性的提出了相应的安全预防控制措施.同时,该聚合罐区的事故树分析结论也可以为同类别化工单位罐区的日常运行、设计改造、维护保养等工作提供理论依据.  相似文献   
78.
为评价二溴海因(简称DBDMH)在使用、储运过程中的危险性,采用75℃热稳定性试验对二溴海因在高热条件下的稳定性进行了研究,采用C600微量热法测试了二溴海因的放热起始温度、分解热,并依据《联合国关于危险货物运输的建议书-试验和标准手册》对其爆炸性进行了筛选,通过固体氧化性试验和家兔皮肤刺激性/腐蚀性试验分别对二溴海因的氧化性和皮肤刺激性进行了测试。结果表明:二溴海因在75℃热稳定性试验过程中没有出现着火或爆炸,未出现自加热迹象,不属于太不稳定不能运输的物质;其分解反应只有一步,起始反应温度大约为157℃,分解热为384.8J/g,不属于爆炸品;二溴海因具有氧化性,根据《联合国关于危险货物运输的建议书-规章范本》其包装级别为Ⅱ级;在家兔皮肤刺激性/腐蚀性试验中未见不可逆损伤,对皮肤具有强刺激性。  相似文献   
79.
印度尼西亚大气污染及其健康影响的回顾AgustiahTri-Tugaswati大气质量监测是印度尼西亚预防污染计划战略中的最初部分。自从1978年印度尼西亚政府建立了一个面向世界卫生组织(WHO)的委员会为全球环境监测系统提供大气质量数据一按照世界卫...  相似文献   
80.
为研究格氏反应的热失控危险特性和格氏试剂反应釜的安全泄放设计,采用VSP2泄放尺寸量热仪对格氏反应的绝热失控反应过程进行了测试,得到了格氏反应失控反应体系的热失控危险特性参数.结果表明:格氏反应失控初始放热温度为59.3℃,反应体系达到的最高温度和最高压力分别为368.33℃和13.16 MPa,反应体系的绝热温升为309.03℃,最大温升速率和最大压升速率分别超过10 000℃/min和200 MPa/min,说明该反应体系的失控过程非常剧烈.试验得到反应体系在绝热条件下从开始放热到最大反应速率时间为39.97 min,表明反应一旦出现波动,采取的安全防控措施操作时间应在39 min以内;反应结束后体系压力和反应开始阶段相比较没有明显的升高,说明该反应体系在整个失控过程中没有不凝性的气体产生,通过Antoine图判定该反应体系的泄放类型为蒸汽泄放.可以利用DIERS泄放设计方法中提供的Leung法和平衡两相流泄放模型(ERM)进行反应器的安全泄放设计.以某化工厂烷基卤化镁反应釜为例进行安全泄放设计,计算得到安全泄放量为73.11 kg/s,泄放装置的泄放能力为2 654.25kg/(m2·s),最终确定反应釜的泄放面积为4.24×10-2 m2,泄放口直径为232.28 mm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号