首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   40篇
  国内免费   40篇
安全科学   15篇
环保管理   1篇
综合类   118篇
基础理论   7篇
污染及防治   1篇
评价与监测   2篇
社会与环境   5篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   10篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   10篇
  2015年   12篇
  2014年   6篇
  2013年   11篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   3篇
  2008年   12篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2003年   1篇
  1999年   1篇
排序方式: 共有149条查询结果,搜索用时 421 毫秒
11.
以重庆市远郊的丰都雪玉洞流域为研究对象,利用气象站和大气氮沉降仪获取2015年7月~2017年12月的大气降水、NH_4~+-N和NO_3~--N等数据,通过NH_4~+-N/NO_3~--N比以及气团后向轨迹模拟探讨了流域大气无机氮湿沉降来源.结果表明:(1)在观测期内,流域DIN总沉降通量为21.37×103kg·a-1,单位面积沉降通量为14.25 kg·(hm~2·a)~(-1),其中NH_4~+-N和NO_3~--N分别为7.72 kg·(hm~2·a)~(-1)和6.53 kg·(hm~2·a)~(-1),分别占DIN湿沉降量的54%和46%;(2)DIN湿沉降通量和浓度表现出明显的季节变化,春夏季DIN湿沉降量比秋冬季节高50%,而秋冬季湿沉降的DIN浓度比春夏季高30%;(3)NH_4~+-N/NO_3~--N介于0.29~2.27之间,雨季(4月~9月)NH_4~+-N/NO_3~--N1,旱季(10月~次年3月)NH_4~+-N/NO_3~--N1,表明流域雨季DIN湿沉降主要来源农业源,旱季主要来源于城市源;(4)流域雨季主要受东南风的影响,大气湿沉降的NH_4~+-N来源于当地与流域东南方向的农业源,旱季主要受西南风影响,大气湿沉降的NO_3~--N来源于流域西南方向的重庆市区和涪陵等城市源.  相似文献   
12.
以武汉加多宝饮料公司王老吉茶饮料的环境影响评价为例,介绍了茶饮料类项目水环境影响评价的内容和要点,提出了改进措施和建议,为其他茶饮料类项目的环境影响评价提供参考和借鉴.  相似文献   
13.
定量研究水生生物对水环境参数的适宜值是评估栖息地质量和维持生物完整性的主要途径. 以辽宁省太子河流域为研究范例,选择Y(优势度指数)大于0.000 1的硅藻为研究对象,结合水环境参数,采用CCA(典范对应分析)、CART(分类回归树)和WA(加权平均回归分析)等方法,分析硅藻与水环境因子的关系,并计算硅藻对驱动因子的最适值. CCA结果表明,IOS(底质指数)、ρ(TDS)(TDS为总溶解固体)和ρ(CODMn)是硅藻群落的驱动因子;CART预测结果表明,IOS高的水环境硅藻密度高于IOS低的水环境,ρ(TDS)和ρ(CODMn)低的水环境硅藻密度高于ρ(TDS)和ρ(CODMn)高的水环境;WA结果显示,96种硅藻对IOS、ρ(TDS)和ρ(CODMn)的最适值范围分别为1.00~6.44、60.29~820.30 mg/L和0.46~2.89 mg/L. 钝端菱形藻解剖刀变种和尖端菱形藻适宜栖息于IOS较低而ρ(CODMn)较高的水环境, Gomphonema trancatum和肿大桥弯藻则适宜栖息于IOS较高的水环境;缠结异极藻二叉变种和尖细异极藻适宜栖息于ρ(TDS)较高的水环境,弧形峨眉藻和克洛钝脆杆藻则适宜栖息于ρ(TDS)较低的水环境;弧形峨眉藻和隐头舟形藻威蓝变种适宜栖息于ρ(CODMn)较低的水环境. 针杆藻和桥弯藻对IOS的最适值高于舟形藻和菱形藻以及其他藻种,96种硅藻对ρ(TDS)和ρ(CODMn)的最适值均表现为菱形藻和异极藻较高、针杆藻和桥弯藻较低.   相似文献   
14.
流域水生态安全评估方法   总被引:2,自引:2,他引:0       下载免费PDF全文
为建立合理的流域水生态安全评估指标体系,以流域为对象,对水生态安全内涵进行了阐释,并对流域水生态安全评估指标进行了系统分析.基于“压力、状态、功能、风险”四要素,构建了“目标层-方案层-要素层-指标层”的评估体系,其中方案层包括水生态压力、水生态状况、水生态功能和水生态风险4个方面,涵盖土地利用、水资源利用、污染物排放、栖息地状态、水生态质量、水产品供给、休闲娱乐、水环境净化、重金属风险等9个评估要素18个评估指标,并详尽表述了各评估指标的内涵及其计算方法.采用综合指数法计算ESI(生态安全指数),并根据ESI得分将水生态系统的安全评级分为安全(3.5≤ESI≤4.0)、较安全(2.5≤ESI<3.5)、一般(1.5≤ESI<2.5)、不安全(0.5≤ESI<1.5)和很不安全(0≤ESI<0.5)5个级别,构建了多指标的流域水生态安全评估方法.   相似文献   
15.
基于鱼类完整性指数的滦河流域生态系统健康评价   总被引:1,自引:0,他引:1       下载免费PDF全文
生物完整性指数作为评价河流健康的重要工具,对流域管理有明确的指导作用.为全面掌握滦河流域生态系统健康状况,构建F-IBI(鱼类完整性指数),开展滦河流域生态系统健康评价.于2016年10-11月对滦河流域58个采样点收集了鱼类与环境数据,根据栖息地质量评分与水质等级来确定参考点(12个)和受损点(7个).利用分布范围检验、敏感性分析及冗余检验对20个候选指标进行筛选,以获得构建F-IBI的核心指标.采用1、3、5赋分法对核心指标进行赋分,并计算F-IBI最终得分.利用分位数法将F-IBI划分为"健康" "亚健康" "一般" "差" "极差"5个等级.利用非参数检验对F-IBI的适用性进行校验.结果表明:①鱼类物种数、个体数、Shannon-Wiener多样性指数、底栖食性鱼类个体百分比、耐受性鱼类个体百分比、产黏性卵鱼类个体百分比、产沉性卵鱼类个体百分比、上层鱼类个体百分比和广布种鱼类个体百分比等9个指标被筛选出,其适合作为构建F-IBI的核心指标.②F-IBI计算结果表明滦河流域58个采样点中,"健康"和"亚健康"等级采样点有22个,"一般"等级采样点22个,"差"和"极差"等级采样点14个.滦河干支流上游地区健康状况较好,干流中下游及部分独流入海河流健康状况较差,这主要受到不同地区社会经济发展的影响.③Mann-Whitney U检验发现,F-IBI在参考点与非参考点之间有显著差异,栖息地综合得分随F-IBI评价等级降低而下降,在"健康"与除"亚健康"外的其他等级以及"极差"与除"差"外的其他等级之间有显著差异.研究显示,构建的F-IBI适用于滦河流域生态系统健康评价.   相似文献   
16.
人类活动干扰下的水环境过程演变是当前全球水安全面临的难点问题.汉江作为南水北调中线工程的重要影响区和水源区,在气候变化和人类活动双重影响下近十几年来水华频繁暴发,科学辨析土地利用类型影响下的汉江水环境质量演变特征,对于政府制定和实施水污染防治政策具有重要的现实意义.基于2011—2018年汉江中下游8个监测站点的7个主要水质指标〔pH、ρ(DO)、ρ(CODMn)、ρ(BOD5)、ρ(NH3-N)、ρ(TP)、ρ(TN)〕448组连续野外监测数据,利用季节性曼肯达尔检验法、相关分析和冗余分析等多种数学统计分析方法,分析了汉江中下游的水质时空演变特征,分析了土地利用类型与水质变化的相关关系.结果表明:①时间特征上,2011—2018年汉江中下游总体水质呈好转趋势,丰水期污染物浓度高于枯水期,2013—2014年出现峰值,2015年以后水质逐渐变好.②空间特征上,水质从汉江中游至下游呈逐渐变差的趋势,由于2014年引江济汉工程的开通,水质在罗汉闸站点及下游有好转趋势.③总体上,农田和城镇用地与污染物浓度均呈显著正相关,最大解释度为0.27;林地、草地与污染物浓度均呈显著负相关,最大解释度为0.31.研究显示,汉江中下游水质有所改善,农田与城镇用地对于汉江中下游水质恶化影响较大,林地、草地等植被覆盖等由于存在一定的水源涵养功能和天然净化能力,可以对水污染起到一定的缓解作用.   相似文献   
17.
太子河河岸带土地利用类型与硅藻群落结构的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
为了评价河岸带土地利用对河流硅藻群落的影响,于2012年5月对太子河河岸带4种主要土地利用类型(森林用地、森林耕作用地、耕地、城镇建设用地)下38个采样点的硅藻群落和水环境特征进行采样分析. 结果表明:森林用地的指示种为膨大桥弯藻(Cymbella turgida)、优美桥弯藻(C. delicatula)、弧形峨眉藻(Ceratoneis arcus)、Gomphonema trancatum等寡污指示种;耕地的指示种为颗粒直链藻(M. granulate)、库津小环藻(Cyclotella kuetzingiana)、线形菱形藻(N. linearis)、尖布纹藻(Gyrosigma acuminatum)等污染指示种. 聚类分析结果显示,相同土地利用类型区域内,硅藻群落结构特征较为相似. 典范对应分析显示,ρ(CODMn)、ρ(SS)(SS为悬浮物)和ρ(TDS)(TDS为总溶解固体)是影响硅藻群落结构特征的主要水环境因子. 不同土地利用类型区域内硅藻群落结构特征差异显著,其中,森林用地内硅藻生物指数(17.98)和硅藻属数量(17.33个)最高,Shannon-Wiener多样性指数(2.22)和Pielou均匀度指数(0.54)最低;耕地内Shannon-Wiener多样性指数和Pielou均匀度指数平均值最高,分别为3.37和0.82;城镇建设用地内物种丰富度(11.00)、硅藻生物指数(9.20)和硅藻平均密度(0.71×104 L-1)最低. 研究显示,不同土地利用类型通过对水环境因子的影响进而影响硅藻群落的变化,其中城镇建设用地面积所占比例较高的河流水环境质量和硅藻群落状况最差;太子河河岸带土地利用类型对河流硅藻群落结构影响显著,并表现出明显的空间异质性.   相似文献   
18.
太子河鱼类群落结构空间分布特征   总被引:6,自引:3,他引:3  
以辽河流域太子河为例,开展鱼类生态调查,分析鱼类群落的空间分布特征,在此基础上进行鱼类地理分布区域划分. 结果表明,太子河鱼类分属2纲9目12科36属44种,符合辽河亚区鱼类的分布特征,其种类繁多,且以纺锤形体型的鲤科鱼类居多. 通过CCA(典范对应分析)发现,水深、水体电导率以及ρ(TDS)(TDS为总溶解固体)和ρ(TN)与鱼类的种类及数量的相关性最大. 根据对各采样点鱼类的渔获量、Shannon-Wiener指数的聚类分析,并且结合各采样点的水温、水深、饵料生物组成、岸边植被、底质、流速、土壤等生态环境因素,以及鱼类分布和种群的结构特征,将太子河流域划分为2个生态区,其中A区包括太子河中、上游的流域,涵盖了51个采样点;B区包括19个采样点,主要是太子河下游的绝大部分流域.   相似文献   
19.
太子河流域水生态功能Ⅱ级区的划分   总被引:3,自引:1,他引:2  
流域水生态功能Ⅱ级区是实施流域层面水生生物多样性保护的重要依据. 以太子河流域为研究对象,开展分区指标筛选技术方法研究,通过指标的空间变异性、主导性及其与水生态因子相关性分析,从年均气温、年降水量、年蒸发量、高程、坡度、坡向和NDVI(归一化植被指数)等备选分区指标中筛选出适宜分区指标,在此基础上采用ISODATA(迭代自组织数据分析方法)非监督分类方法划分了太子河水生态功能Ⅱ级区. 结果表明,高程和NDVI具有良好的空间敏感性、主导性以及与水生态因子的相关性,可以反映地貌和植被对太子河水生态系统的影响,是太子河流域水生态功能Ⅱ级区划分的适宜指标. 采用上述指标可将太子河流域划分为3个水生态功能Ⅱ级区:①上游山地森林河流水生态亚区,平均海拔511m,区内以浅水性鱼类和激流性大型底栖动物为主;②中游丘陵森林河流水生态亚区,平均海拔282m,区内以溪流性鱼类和缓流性大型底栖动物为主;③下游平原农业河流水生态亚区,平均海拔65m,区内多受人类活动干扰,以耐污性大型底栖动物为主,少见鱼类.   相似文献   
20.
为探寻西苕溪流域地下水中NO3--N的污染来源,对西苕溪流域地表水、地下水体的NO3--N污染状况进行了调查,并结合水化学与NO3--N同位素对其来源进行解析. 结果显示,西苕溪流域地表水的ρ(NO3--N)为1.07~3.45 mg/L,ρ(NO2--N)为0.15~0.35 mg/L;地下水中ρ(NO3--N)为3.24~15.31 mg/L,平均值达9.26 mg/L. 下游地区地下水的ρ(NO2--N)较高(0.26~4.25 mg/L),平均值达3.00 mg/L. ρ(NO3-)与ρ(Cl-)的关系显示,西苕溪地表水、地下水存在比较稳定的NO3--N输入来源. NO3--N同位素分析结果显示,地表水的δ15N为7.0‰~16.7‰,说明上游NO3--N主要来源于土壤有机氮的矿化,中下游则主要受到农业施用化肥与人类生活污水二者的共同影响;地下水的δ15N为14.3‰~27.1‰,说明调查区域内的地下水受人畜粪便和生活污水的影响可能更为强烈,另外,地下水中存在的反硝化作用也是造成地下水δ15N增高的原因.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号