首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   19篇
  国内免费   23篇
安全科学   10篇
废物处理   3篇
环保管理   9篇
综合类   59篇
基础理论   4篇
污染及防治   28篇
评价与监测   4篇
社会与环境   1篇
灾害及防治   1篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   11篇
  2013年   5篇
  2012年   6篇
  2011年   9篇
  2010年   14篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2005年   7篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
排序方式: 共有119条查询结果,搜索用时 31 毫秒
31.
基于唐山市机动车定期环保检测数据获取不同类型车辆的本地年均行驶里程,建立城区内典型车辆的"里程-注册年"特征曲线.采用车载排放测试法获取唐山市典型国Ⅵ阶段轻重型汽车实际道路排放因子.利用COPERT模型进行机动车排放因子本地化修正,建立涵盖不同排放阶段和燃料动力类型的唐山市机动车排放清单,结合唐山市路网信息,建立基于ArcGIS的3km×3km高时空分辨率网格化排放清单,并分析了国三及以下中重型柴油车(简称高排放车)不同淘汰与DPF排放治理比例情景下机动车减排与投入成本效益.研究表明,2020年机动车CO,HC,NOx,PM2.5,PM10年排放量分别为92403.51,10034.53,70568.35,2036.51,2160.65t,其中:NOx,PM2.5和PM10排放主要来源于柴油车,分担率分别为92%,89%和89%;CO和HC排放主要来自汽油车,分担率分别为71%和73%.唐山市实施二环内国Ⅳ及以下柴油货车限行区政策后,二环内CO和HC年排放量削减率分别为22.41%和21.68%;而NOx,PM10和PM2.5污染物排放强度显著降低,年排放量削减率分别为78.60%,84.85%和84.79%.在高排放车淘汰与治理情景下,随着高排放车淘汰比例的增长,投入成本和NOx年均减排量呈线性上升趋势,且NOx减排效果更加显著,而PM减排辆略呈下降趋势.高排放车淘汰率每增长10%,NOx年均减排量增加892.41t,PM年均减排量减少7.56t,年投入成本增加1.13亿元.  相似文献   
32.
郭雲  李胄彦  王志伟 《环境工程》2022,40(12):253-269
水中的有机污染物由于其毒性、持久性和生物难降解性,对生态环境和人体健康造成严重危害。传统膜分离技术通过物理截留去除水中污染物,然而有机污染物、微生物与膜表面的相互作用不可避免地导致膜污染,缩短膜使用寿命。电化学膜分离技术(electrochemical membrane filtration,EMF)是一种集污染物截留和电化学降解双重功能于一体的新兴水处理技术,具有强化污染物去除、抗污染和效能提升的优势,因此在污染物深度脱除和消毒等方面得到了广泛研究与关注。介绍了电化学膜分离技术在水处理中的研究进展,简述了其工作原理和优势,并重点分析了电化学膜材料、反应器运行参数、水质条件的影响,介绍了该技术在污染物去除和水体消毒的应用现状,最后对其发展进行了总结和展望。  相似文献   
33.
在聚偏氟乙烯(PVDF)微滤膜表面接枝超支化聚合物聚乙烯亚胺(HPEI),并通过环氧丙醇与氨基的开环反应在PVDF膜表面形成高密度的多羟基结构,实现PVDF膜的亲水改性.实验对膜的表面亲水性、抗粘附性能和抗污染性能进行表征,并采用原子力显微镜(AFM)测量膜与污染物探针之间的粘附力以进一步探究改性膜的抗污染机理.实验结果显示,改性后,PVDF膜的接触角从85°减小至42°,润湿时间从20s缩短至10s,表面亲水性显著提高;在静态吸附实验中,改性膜表面粘附的蛋白质和多糖数量明显减少;在动态污染实验中,改性膜的水通量恢复率(FRR)较高,不可逆通量下降率(IFR)较低,说明其较强的抗污染性能.AFM界面粘附力的测试结果表明污染物探针与改性膜面的粘附力较弱,进一步证实改性膜表面丰富的亲水基团以及超支化结构的位阻效应可以有效改善PVDF膜的抗污染性能.  相似文献   
34.
混响是主动声纳的主要干扰。矢量水听器是较新型的水声测量设备,其接收的混响和目标信号之间存在相位差异。基于这些差异,探索了矢量声能流方法用于抗混响处理的可行性,在理论上得到了较高的空间处理增益和时间处理增益。计算结果和仿真结果表明,相对于常规的声压平方积分器,该方法具有很好的抗混响效果。  相似文献   
35.
膜-生物反应器中溶解性有机物的三维荧光分析   总被引:10,自引:2,他引:8       下载免费PDF全文
采用三维荧光技术研究了膜-生物反应器(MBR)处理生活污水过程及膜污染物中溶解性有机物(DOM)的变化,并与传统的厌氧/缺氧/好氧(AAO)活性污泥工艺进行了对比.结果表明,生活污水DOM中主要的荧光物质有类蛋白质(荧光峰A和B)及类腐殖质(荧光峰C),经MBR处理后,荧光峰的强度降低了16%~35%,同时类蛋白质的结构也发生了变化.与好氧段滤液相比,溶解性膜污染物中类腐殖质含量较低,主要的荧光物质为分子量较小、共轭性较弱的类蛋白质.AAO工艺中厌氧段加强了对荧光峰A和C的去除,处理过程中类蛋白质结构的变化与MBR工艺有显著不同.  相似文献   
36.
自然通风沸石生物滴滤池脱氮机理   总被引:2,自引:1,他引:1  
研究了自然通风沸石生物滴滤池中无机含氮化合物及微生物活性的沿程变化规律.结果表明,在水力负荷为6 m3/(m2·d),进水ρ(氨氮)为(19.2±2.6) mg/L的条件下,滴滤池单位体积滤料对氨氮的去除效果自上而下逐渐降低.而硝化速率的测定结果表明,中层和下层单位体积滤料上的硝化细菌活性较上层有了显著增加.因此可以认为,影响氨氮去除效果的首要因素是液相与生物膜相之间的氨氮传质速率,而非单位体积滤料的硝化细菌活性.滴滤池进出水中无机含氮化合物组成的变化表明,滤层中出现了显著的同步硝化反硝化现象,原因是滤池内部的沸石颗粒通风不畅,造成了局部的缺氧环境,利于反硝化作用的进行;同时,由于进水端C/N相对较高,反硝化主要发生在滴滤池上层.对生物膜耗氧速率的分析表明,上层生物膜以异养菌为主,随着有机物的沿程降解,中层和下层自养菌所占比例增加.   相似文献   
37.
采用三维荧光(EEM)技术对膜-生物反应器(MBR)运行过程中进出水、膜面溶解性污染物、溶解性微生物(SMP)和胞外聚合物(EPS)进行分析,并对各运行条件下荧光强度与膜污染速率进行比较.结果表明:各工况膜污染顺序为工况1(0.55 kPa/d)<工况3(1.37 kPa/d)<工况2(1.71 kPa/d)<工况4(3.69 kPa/d),SMP中的类蛋白质和类富里酸,以及EPS中的类蛋白质和类腐殖酸,均与各工况膜污染速率呈一致的变化趋势,而膜面溶解性污染物中的类蛋白质荧光峰则与膜污染速率没有明显的关系,说明在膜表面积累的荧光物质可能与其他有机物共同作用影响了膜污染速率.   相似文献   
38.
利用超声技术破解剩余污泥,不仅能有效降低污泥含水率,提高污泥稳定性,还能在上清液中释放C、N和P等有机物,为污泥资源化利用提供条件。通过考察超声时间、功率及频率等因素,分析超声空化对污泥稳定化程度和污泥内含营养物质释放的影响规律,形成超声破解污泥的最优实验方案。综合考虑超声效果与节能,选择超声频率22 k Hz,超声功率800 W,超声时间15 min为优化的工艺条件,其上清液中的COD浓度高达954.33 mg·L~(-1),总氮含量为153.16 mg·L~(-1),总磷含量为72.65 mg·L~(-1),污泥颗粒粒径显著减小,d50从原泥的34.82μm减小至2.99μm,并形成少量纳米级颗粒,探讨了纳米颗粒对污泥活性的影响,有利于后续污泥稳定化和减量化。  相似文献   
39.
将季铵盐(QAC)改性聚偏氟乙烯(PVDF)膜运用于厌氧膜生物反应器(AnMBR),评估了其抗污染性能,探讨了厌氧微生物在QAC/PVDF膜上短期暴露时的活性变化情况。结果表明,QAC/PVDF膜在AnMBR中清洗周期较长,说明QAC/PVDF膜可延缓AnMBR的膜污染形成;将厌氧微生物短期暴露于QAC/PVDF膜的环境中,QAC/PVDF膜对厌氧生物处理相关酶活性影响较小,不会引起厌氧微生物细胞破损或产甲烷性能下降。但随着直接接触的QAC浓度上升,厌氧微生物细胞破损比例上升,相关酶活性和产甲烷性能下降。  相似文献   
40.
王志伟 《劳动保护》2021,(6):100-102
在危险货物生产及仓储企业中,由于操作环境存在易燃易爆危险货物,需要用相应防爆等级的叉车来完成装卸、搬运作业,以确保安全生产。本文以天津港为例,结合港口危险货物集装箱堆场实际操作,从危险货物类型.危险货物堆存场景、防爆叉车作业模式等方面进行分析,结合生产作业的一般性因素和防爆型因素,给出港口防爆叉车选型及作业要求的建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号