首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   9篇
安全科学   1篇
综合类   15篇
基础理论   1篇
污染及防治   5篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有22条查询结果,搜索用时 46 毫秒
11.
膜生物反应器(MBR)处理干法腈纶废水   总被引:8,自引:0,他引:8  
针对干法腈纶废水污染物种类多且难以生物降解的特点,以及抚顺石油化工公司腈纶化工厂废水处理工艺脱氮效果差、出水ρ(CODCr)高的现状,采用填料式缺氧-好氧膜生物反应器(MBR)工艺处理干法腈纶废水,考察该技术对干法腈纶废水CODCr,NH4+-N和TN的去除率,以及处理效果的稳定性. 结果表明:MBR处理干法腈纶废水的出水水质稳定,对进水水质、水量的变化有较强的耐冲击性;采用缺氧-好氧工艺不仅可去除97%以上的NH4+-N,还可去除60%以上的TN;但是由于干法腈纶废水可生化性差,且ρ(NH4+-N)高,缺氧段反硝化作用及好氧段硝化作用存在缺少碳源和碱度的现象.   相似文献   
12.
常温限氧条件下SBR反应器中的部分亚硝化研究   总被引:5,自引:1,他引:4  
常温下(14.1~24.2℃)以二级出水(NH 4-N 30~100 mg/L)为原水,在限氧条件下(DO为0.3~0.4 mg/L)的SBR反应器中研究了适合ANAMMOX工艺进水的部分亚硝化工艺.ANAMMOX反应器进水要求NH 4/NO-2=1/1.31,即仅有一部分氨氮形成亚硝酸盐.研究中通过控制进水碱度,以在线DO趋势线为指示,实现部分亚硝化,最终获得NH 4-N/NO-2-N合适比例的出水.当约57%的氨氮转化为亚硝酸盐时,同等比例的HCO-3/NH 4消耗会导致pH值的自然下降.当pH值下降到一定程度时,氨氧化细菌代谢速率的减小导致了耗氧速率(OUR)的急剧下降,DO趋势线就会出现突跃的特征点(本研究以DO突跃至1.0 mg/L为判别),指示出部分亚硝化反应的终点.试验对30~100 mg/L范围内4种氨氮浓度条件下部分亚硝化的最佳碱度进行了研究.结果表明,本试验中进水碱度与氨氮浓度的比率是影响部分亚硝化工艺出水亚硝化比率(NO-2,NH 4)的重要因素,通过对进水碱度的控制完全可以实现向ANAMMOX反应器提供进水的部分亚硝化工艺.  相似文献   
13.
为解决东北某湿法腈纶生产厂中回收NaSCN(硫氰酸钠)效果欠佳的现状,采用不同改性方法制备了10%-H-GAC(氧化改性活性炭)、1M-Na-GAC(还原改性活性炭)和600-N2-GAC(高温改性活性炭),并探讨了改性方法、吸附时间、投加量以及初始pH对NaSCN膜分离浓水脱杂过程的影响. 结果表明:10%-H-GAC较其他改性活性炭对浓水中NH3-N、CODCr、TOC和盐度的去除率要好. 以10%-H-GAC为吸附剂,吸附时间为180 min,投加量为12.0 g/L,初始pH为6.0时,NH3-N、CODCr、TOC和盐度去除率分别可达35.1%、32.3%、34.9%、25.4%,表明该处理技术能很好地去除硫氰酸钠膜分离浓水中的污染物. 采用Fruendlich吸附等温模型对10%-H-GAC的吸附行为进行拟合,得到的NH3-N、CODCr、TOC及盐度拟合方程的相关系数均在0.92以上. 准二级动力学方程能更好地描述废水中杂质在活性炭上的吸附行为,反映吸附过程. 研究显示,10%-H-GAC能有效去除硫氰酸钠膜分离浓水中的杂质,达到回收硫氰酸钠的目的.   相似文献   
14.
采用铁碳微电解工艺对湿法腈纶废水进行预处理试验。通过单因素试验确定了铁屑、活性炭投加量及反应时间等因素对处理效果的影响。结果表明,采用铁碳微电解工艺处理初始CODCr为1 076 mgL,CN-浓度为5.50mgL的湿法腈纶废水,当铁碳微电解反应中铁屑和活性炭投加量均为35 gL,反应时间为90 min,初始pH为4.50时,废水中CODCr的去除率在36.0%以上,CN-的去除率超过90%;废水BOD5CODCr由0.39提高到0.56,废水可生化性显著提高。  相似文献   
15.
在城市污水再生全流程理念指导下,分析了目前较为实用的几种污水再生工艺,阐述了硝化-反硝化和厌氧氨氧化两种生物脱氮途径的机理,并进行了对比分析,提出了以厌氧氨氧化为主体生物脱氮单元的城市污水的再生全流程新思路。城市污水再生全流程不但在各自的单元中实现了TOC,TN和TP去除的优化,而且在生物脱氮单元中,根据含氮废水的水质和物理特性实现了污泥消化液脱氮和主体二级处理水脱氮的优化。  相似文献   
16.
采用Fenton法处理湿法腈纶聚合废水,考察了H2O2投加量、Fe2+投加量、p H和反应时间等因素对氧化和混凝作用去除废水污染物的影响,并分析了废水可生化性和特征污染物的变化。结果表明,Fenton法可以有效去除废水中有机污染物,在初始p H为3.0,Fe2+投加量为15.0 mmol/L,H2O2投加量为90.0 mmol/L的条件下,反应120 min后废水COD去除率可以达到56.8%,其中氧化和混凝作用对应的去除率分别为43.3%和13.5%;处理后废水的BOD5/COD由0.24升高至0.43;处理后废水中丙烯腈以及其他多数有机污染物能被有效去除。  相似文献   
17.
采用新型Biofringe(BF)填料并结合A/O工艺设计了复合式膜生物反应器,采用连续进水的动态自然培养挂膜方式,并对处理干法腈纶废水做了中试启动试验。结果表明:该系统挂膜过程简单迅速,启动周期短,系统稳定性强,BF填料对反应器内的污泥具有良好的吸附效果。挂膜稳定后控制HTR为36 h,硝化液回流比为100%,进水流量为600 L/h,反应器出水水质稳定,出水NH4+-N浓度基本在5 mg/L以下,优于GB 4287—92《纺织染整工业水污染物排放标准》的一级排放标准(NH4+-N浓度小于15 mg/L),TN平均去除率可达55.86%,对腈纶废水具有较强的脱氮能力。膜的截留作用对CODCr的去除有一定的效果,对NH4+-N没有去除效果,反应器内存在同步硝化和反硝化(SND)反应。  相似文献   
18.
厌氧氨氧化过程中COD及pH与基质浓度之间的关系   总被引:8,自引:3,他引:5  
田智勇  李冬  张杰 《环境科学》2009,30(11):3342-3346
分析了上向流厌氧氨氧化生物滤池中氮素化合物浓度、COD和pH变化规律以及ANAMMOX活性和生物量的分布规律,利用数理统计的方法研究了厌氧氨氧化过程中COD和pH与氮素基质浓度之间的关系.结果表明,溶解氧和氮负荷的共同作用使得ANAMMOX活性和生物量的分布沿滤层深度呈"山脊"状不均匀分布;异养反硝化的存在和H+的消耗使得厌氧氨氧化过程中COD和pH分别呈降低和升高趋势;100 mg/L以下的有机物浓度对厌氧氨氧化菌的影响不大,且COD和pH与基质NH4+-N浓度之间呈良好的线性相关关系.本试验中COD-NH4+-N和pH-NH4+-N拟合直线的斜率分别为1.113 8±0.052 2和-0.111 3±0.001 2,置信度为95%,平均相关系数R2分别为0.982 3和0.985 0.  相似文献   
19.
常温城市污水同步亚硝化-厌氧氨氧化研究   总被引:3,自引:0,他引:3  
在常温14.7~24.7℃条件下,以城市生活污水为研究对象,采用SBR反应器,通过调整曝气量控制DO浓度为0.05~0.30 mg/L,进行了同步亚硝化-厌氧氨氧化试验.结果表明,SBR活性污泥反应器可以在常温条件下实现城市污水氨氮的同步亚硝化-厌氧氨氧化反应;DO可以作为其反应终点的指示参数,本试验确定为1 mg/L;在SBR探索试验中,NH+4-N消耗速率为0.164~0.218 kg/(m3·d),NO-3-N产生速率为0.026~0.036 kg/(m3·d),TN脱除速率为0.124~0.194 kg/(m3·d),去除效率为65%~75%;在SBR改进试验中,分别通过提高温度、增设非曝气运行时段和增加厌氧氨氧化菌生物量3个途径,避免了亚硝酸盐的积累,TN去除效率提高至77%~88%.考虑到脱氮速率和实际的工程应用条件,认为增加厌氧氨氧化菌的生物量是提高SBR反应器脱氮效能的优选途径.  相似文献   
20.
响应面法优化Fenton预处理干法腈纶废水   总被引:2,自引:1,他引:1  
采用Fenton法预处理难降解干法腈纶废水,选取H2O2用量、Fe2+用量、初始pH和反应温度4个因素为变量,COD去除率为响应值进行中心组合设计。利用响应面法对实验结果进行分析,建立了以COD去除率为响应值的二次多项式模型并进行了显著性检验,分析了各因素单独及交互作用对COD去除率的影响,确定了最佳反应条件,并考察了最佳条件下处理前后废水可生化性和毒性变化。结果表明,所选取的4个因素影响COD去除率的主次顺序依次为:H2O2用量、Fe2+用量、初始pH和反应温度;在H2O2浓度为90.0 mmol/L、Fe2+浓度为23.9 mmol/L、初始pH值为3.4、温度为38.5℃的最佳条件下,COD去除率为53.8%,与模型预测值51.9%吻合度较高,偏差仅为3.66%;最佳条件下处理后废水可生化性显著提高,生物毒性明显降低,适宜于后续的生化处理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号